package main import ( mat "github.com/skelterjohn/go.matrix" base "golearn/base" util "golearn/utilities" knnclass "golearn/knn" "fmt" ) func main(){ //Parses the infamous Iris data. cols, rows, _, labels, data := base.ParseCsv("datasets/randomdata.csv", 2, []int{0,1}) newlabels := util.ConvertLabelsToFloat(labels) //Initialises a new KNN classifier knn := knnclass.KNNRegressor{} knn.New("Testing", newlabels, data, rows, cols) for { //Creates a random array of N float64s between 0 and Y randArray := util.RandomArray(2, 100) //Initialises a vector with this array random := mat.MakeDenseMatrix(randArray,1,2) //Calculates the Euclidean distance and returns the most popular label outcome, _ := knn.Predict(random, 3) fmt.Println(outcome) } }