1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-25 13:48:49 +08:00

30 Commits

Author SHA1 Message Date
Francis Oliveira
d33eb47a05 Fix random forest model loading 2021-01-10 00:56:45 -03:00
Yaser Azfar
ae8d7f7baa adds error checking for err variable that were being left unchecked 2019-12-27 12:10:38 +13:00
Richard Townsend
e7fee0a2d1 Reformat, fix tests 2017-09-10 21:10:54 +01:00
Richard Townsend
fc110aab48 Fix bad import, reformat 2017-09-10 20:35:34 +01:00
Richard Townsend
e27215052b ensemble: tests pass 2017-09-10 19:30:02 +01:00
Richard Townsend
768d2cd19f meta: tests are almost passing 2017-09-10 16:59:05 +01:00
Richard Townsend
ead76bdd7e I think I'm going to refocus this whole thing 2017-09-09 12:31:32 +01:00
Richard Townsend
8fe06e7332 Support for individual class weightings 2014-10-30 23:28:26 +00:00
Richard Townsend
981d43f1dd Adds support for multi-class linear SVMs.
This patch
  * Adds a one-vs-all meta classifier into meta/
  * Adds a LinearSVC (essentially the same as LogisticRegression
    but with different libsvm parameters) to linear_models/
  * Adds a MultiLinearSVC into ensemble/ for predicting
    CategoricalAttribute  classes with the LinearSVC
  * Adds a new example dataset based on classifying article headlines.

The example dataset is drawn from WikiNews, and consists of an average,
min and max Word2Vec representation of article headlines from three
categories. The Word2Vec model was computed offline using gensim.
2014-10-05 11:15:41 +01:00
Amit Kumar Gupta
9f67f73330 Convert some tests to goconvey, and improve assertions along the way 2014-08-22 13:39:29 +00:00
Amit Kumar Gupta
1809a8b358 RandomForest returns error when fitting data with fewer features than the RandomForest plans to use
- BaseClassifier Predict and Fit methods return errors
- go fmt ./...

Conflicts:
	ensemble/randomforest.go
	ensemble/randomforest_test.go
	trees/tree_test.go
2014-08-22 13:39:29 +00:00
Amit Kumar Gupta
529b3bcaa5 Avoid renaming packages on import 2014-08-22 13:39:29 +00:00
Amit Kumar Gupta
947ee8380e Return error instead of panicking when unable to get confusion matrix 2014-08-22 13:39:29 +00:00
Amit Kumar Gupta
14aad31821 Consistently use (t *testing.T) instead of T or testEnv 2014-08-22 08:44:41 +00:00
Amit Kumar Gupta
695aec6eb6 Favor idiomatic t.Fatalf over panic for test failures 2014-08-22 08:07:55 +00:00
Amit Kumar Gupta
45545d6ebd Remove Println's from automated test suite since they aren't assertions 2014-08-22 07:58:01 +00:00
Amit Kumar Gupta
66ad866cb3 RandomForest panics when trying to fit data with too few features instead of just hanging forever 2014-08-22 07:39:14 +00:00
Amit Kumar Gupta
21bb2fc9fa Remove redundant import renames 2014-08-22 07:21:24 +00:00
Richard Townsend
2e5deb1476 ensemble: merge from v2-instances 2014-08-03 15:16:50 +01:00
Niclas Jern
627a5537d3 Comments should be of the form "<Struct> ..." or "<MethodName> ..." 2014-07-18 13:48:28 +03:00
Remo Hertig
f77c1dcde0 use multiple return values instead of an array in InstancesTrainTestSplit 2014-06-06 21:33:17 +02:00
Richard Townsend
a6072ac9de Package documentation 2014-05-19 12:59:11 +01:00
Richard Townsend
889fec4419 Examples for RandomForest, ID3 and Random trees 2014-05-19 12:42:03 +01:00
Richard Townsend
45ca6063f1 Not sure if this bagging version is better or not
More more similar to "Attribute bagging:improving accuracy of classifier ensembles by using random feature subsets" (Brill)
2014-05-18 11:49:35 +01:00
Richard Townsend
1b0e2dce7c Correction to randomisation and train-test split 2014-05-18 11:23:32 +01:00
Richard Townsend
12ace9def5 Identified source of the low accuracy 2014-05-17 20:37:19 +01:00
Richard Townsend
13c0dc3eba Reduced-error pruning 2014-05-17 18:06:01 +01:00
Richard Townsend
c516907b13 Passes all the tests 2014-05-17 17:35:10 +01:00
Richard Townsend
cf165695c8 ChiMerge seems to improve accuracy 2014-05-17 16:20:56 +01:00
Richard Townsend
fdb67a4355 Initial work on decision trees
Random Forest has occasional disastrous accuracy:
	 never seen that happen in WEKA
2014-05-14 14:00:22 +01:00