mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-28 13:48:56 +08:00
Replace Panics with error returns to BernoulliNBClassifier Fit method to satisfy base.Classifier interface
This commit is contained in:
parent
c3cae572f4
commit
bffc4a52e6
@ -182,7 +182,7 @@ func NewBernoulliNBClassifier() *BernoulliNBClassifier {
|
||||
|
||||
// Fill data matrix with Bernoulli Naive Bayes model. All values
|
||||
// necessary for calculating prior probability and p(f_i)
|
||||
func (nb *BernoulliNBClassifier) Fit(X base.FixedDataGrid) {
|
||||
func (nb *BernoulliNBClassifier) Fit(X base.FixedDataGrid) error {
|
||||
|
||||
// Check that all Attributes are binary
|
||||
classAttrs := X.AllClassAttributes()
|
||||
@ -190,14 +190,14 @@ func (nb *BernoulliNBClassifier) Fit(X base.FixedDataGrid) {
|
||||
featAttrs := base.AttributeDifference(allAttrs, classAttrs)
|
||||
for i := range featAttrs {
|
||||
if _, ok := featAttrs[i].(*base.BinaryAttribute); !ok {
|
||||
panic(fmt.Sprintf("%v: Should be BinaryAttribute", featAttrs[i]))
|
||||
return fmt.Errorf("%v: Should be BinaryAttribute", featAttrs[i])
|
||||
}
|
||||
}
|
||||
featAttrSpecs := base.ResolveAttributes(X, featAttrs)
|
||||
|
||||
// Check that only one classAttribute is defined
|
||||
if len(classAttrs) != 1 {
|
||||
panic("Only one class Attribute can be used")
|
||||
return fmt.Errorf("Only one class Attribute can be used")
|
||||
}
|
||||
|
||||
// Number of features and instances in this training set
|
||||
@ -258,6 +258,7 @@ func (nb *BernoulliNBClassifier) Fit(X base.FixedDataGrid) {
|
||||
}
|
||||
|
||||
nb.fitOn = base.NewStructuralCopy(X)
|
||||
return nil
|
||||
}
|
||||
|
||||
// Use trained model to predict test vector's class. The following
|
||||
|
Loading…
x
Reference in New Issue
Block a user