1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-30 13:48:57 +08:00

Starting to take shape

This commit is contained in:
Stephen Whitworth 2013-12-27 00:59:06 +00:00
parent d3ccfbf12c
commit b8541bd446

44
knn.go
View File

@ -2,6 +2,7 @@ package main
import (
mat "github.com/skelterjohn/go.matrix"
rand "math/rand"
"fmt"
)
@ -11,34 +12,49 @@ type KNNClassifier struct {
Labels []string
}
//Initialises a new classifier
func RandomArray(n int) []float64 {
ReturnedArray := make([]float64, n)
for i := 0; i < n; i++ {
ReturnedArray[i] = rand.Float64()
}
return ReturnedArray
}
//Mints a new classifier
func (KNN *KNNClassifier) New(name string, labels []string, numbers []float64, x int, y int){
KNN.Data = *mat.MakeDenseMatrix(numbers, x, y)
KNN.Name = name
KNN.Labels = labels
}
func (KNN *KNNClassifier) ComputeDistance(vector mat.DenseMatrix) mat.DenseMatrix {
//Computes a variety of distance metrics between two vectors
func (KNN *KNNClassifier) ComputeDistance(vector *mat.DenseMatrix) *mat.DenseMatrix {
//Add switches for different distance metrics
result, _ := KNN.Data.TimesDense(&vector)
return *result
result, err := KNN.Data.TimesDense(vector)
if err != nil {
fmt.Println(err)
}
fmt.Println(result)
return result
}
func (KNN *KNNClassifier) Predict(vector mat.DenseMatrix) mat.DenseMatrix {
blah := KNN.ComputeDistance(vector)
//return *mat.Difference(&KNN.Data, &vector)
return blah
//Returns a classification based on a vector input
func (KNN *KNNClassifier) Predict(vector mat.DenseMatrix) *mat.DenseMatrix {
return KNN.ComputeDistance(&vector)
}
//Returns a label, given an index
func (KNN *KNNClassifier) GetLabel(index int) string {
return KNN.Labels[index]
}
func main(){
knn := KNNClassifier{}
dense := *mat.MakeDenseMatrix([]float64{4,5,1,3,4,2},2,3)
knn.New("Testing", []string{"this sucks", "hiya"}, []float64{1,2,3,4,5,6},2,3)
//hey := knn.ComputeDistance(dense)
blof := knn.Predict(dense)
fmt.Println(blof)
for {
values := RandomArray(4)
knn := KNNClassifier{}
knn.New("Testing", []string{"this sucks", "hiya"}, values,2,2)
knn.Predict(knn.Data)
}
}