mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-25 13:48:49 +08:00
adding files from gokmeans
This commit is contained in:
parent
710eabd2b7
commit
ae860a994e
201
kmeans/gokmeans.go
Normal file
201
kmeans/gokmeans.go
Normal file
@ -0,0 +1,201 @@
|
||||
/*
|
||||
Gokmeans is a simple k-means clusterer that determines centroids with the Train function,
|
||||
and then classifies additional observations with the Nearest function.
|
||||
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"github.com/mdesenfants/gokmeans"
|
||||
)
|
||||
|
||||
var observations []gokmeans.Node = []gokmeans.Node {
|
||||
gokmeans.Node{20.0, 20.0, 20.0, 20.0},
|
||||
gokmeans.Node{21.0, 21.0, 21.0, 21.0},
|
||||
gokmeans.Node{100.5, 100.5, 100.5, 100.5},
|
||||
gokmeans.Node{50.1, 50.1, 50.1, 50.1},
|
||||
gokmeans.Node{64.2, 64.2, 64.2, 64.2},
|
||||
}
|
||||
|
||||
func main() {
|
||||
// Get a list of centroids and output the values
|
||||
if success, centroids := gokmeans.Train(observations, 2, 50); success {
|
||||
// Show the centroids
|
||||
fmt.Println("The centroids are")
|
||||
for _, centroid := range centroids {
|
||||
fmt.Println(centroid)
|
||||
}
|
||||
|
||||
// Output the clusters
|
||||
fmt.Println("...")
|
||||
for _, observation := range observations {
|
||||
index := gokmeans.Nearest(observation, centroids)
|
||||
fmt.Println(observation, "belongs in cluster", index+1, ".")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*/
|
||||
package gokmeans
|
||||
|
||||
import (
|
||||
"math/rand"
|
||||
"time"
|
||||
)
|
||||
|
||||
// Node represents an observation of floating point values
|
||||
type Node []float64
|
||||
|
||||
// Train takes an array of Nodes (observations), and produces as many centroids as specified by
|
||||
// clusterCount. It will stop adjusting centroids after maxRounds is reached. If there are less
|
||||
// observations than the number of centroids requested, then Train will return (false, nil).
|
||||
func Train(Nodes []Node, clusterCount int, maxRounds int) (bool, []Node) {
|
||||
if int(len(Nodes)) < clusterCount {
|
||||
return false, nil
|
||||
}
|
||||
|
||||
// Check to make sure everything is consistent, dimension-wise
|
||||
stdLen := 0
|
||||
for i, Node := range Nodes {
|
||||
curLen := len(Node)
|
||||
|
||||
if i > 0 && len(Node) != stdLen {
|
||||
return false, nil
|
||||
}
|
||||
|
||||
stdLen = curLen
|
||||
}
|
||||
|
||||
centroids := make([]Node, clusterCount)
|
||||
|
||||
r := rand.New(rand.NewSource(time.Now().UnixNano()))
|
||||
|
||||
// Pick centroid starting points from Nodes
|
||||
for i := 0; i < clusterCount; i++ {
|
||||
srcIndex := r.Intn(len(Nodes))
|
||||
srcLen := len(Nodes[srcIndex])
|
||||
centroids[i] = make(Node, srcLen)
|
||||
copy(centroids[i], Nodes[r.Intn(len(Nodes))])
|
||||
}
|
||||
|
||||
// Train centroids
|
||||
movement := true
|
||||
for i := 0; i < maxRounds && movement; i++ {
|
||||
movement = false
|
||||
|
||||
groups := make(map[int][]Node)
|
||||
|
||||
for _, Node := range Nodes {
|
||||
near := Nearest(Node, centroids)
|
||||
groups[near] = append(groups[near], Node)
|
||||
}
|
||||
|
||||
for key, group := range groups {
|
||||
newNode := meanNode(group)
|
||||
|
||||
if !equal(centroids[key], newNode) {
|
||||
centroids[key] = newNode
|
||||
movement = true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true, centroids
|
||||
}
|
||||
|
||||
// equal determines if two nodes have the same values.
|
||||
func equal(node1, node2 Node) bool {
|
||||
if len(node1) != len(node2) {
|
||||
return false
|
||||
}
|
||||
|
||||
for i, v := range node1 {
|
||||
if v != node2[i] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
// Nearest return the index of the closest centroid from nodes
|
||||
func Nearest(in Node, nodes []Node) int {
|
||||
count := len(nodes)
|
||||
|
||||
results := make(Node, count)
|
||||
cnt := make(chan int)
|
||||
for i, node := range nodes {
|
||||
go func(i int, node, cl Node) {
|
||||
results[i] = distance(in, node)
|
||||
cnt <- 1
|
||||
}(i, node, in)
|
||||
}
|
||||
|
||||
wait(cnt, results)
|
||||
|
||||
mindex := 0
|
||||
curdist := results[0]
|
||||
|
||||
for i, dist := range results {
|
||||
if dist < curdist {
|
||||
curdist = dist
|
||||
mindex = i
|
||||
}
|
||||
}
|
||||
|
||||
return mindex
|
||||
}
|
||||
|
||||
// Distance determines the square Euclidean distance between two nodes
|
||||
func distance(node1 Node, node2 Node) float64 {
|
||||
length := len(node1)
|
||||
squares := make(Node, length, length)
|
||||
|
||||
cnt := make(chan int)
|
||||
|
||||
for i, _ := range node1 {
|
||||
go func(i int) {
|
||||
diff := node1[i] - node2[i]
|
||||
squares[i] = diff * diff
|
||||
cnt <- 1
|
||||
}(i)
|
||||
}
|
||||
|
||||
wait(cnt, squares)
|
||||
|
||||
sum := 0.0
|
||||
for _, val := range squares {
|
||||
sum += val
|
||||
}
|
||||
|
||||
return sum
|
||||
}
|
||||
|
||||
// meanNode takes an array of Nodes and returns a node which represents the average
|
||||
// value for the provided nodes. This is used to center the centroids within their cluster.
|
||||
func meanNode(values []Node) Node {
|
||||
newNode := make(Node, len(values[0]))
|
||||
|
||||
for _, value := range values {
|
||||
for j := 0; j < len(newNode); j++ {
|
||||
newNode[j] += value[j]
|
||||
}
|
||||
}
|
||||
|
||||
for i, value := range newNode {
|
||||
newNode[i] = value / float64(len(values))
|
||||
}
|
||||
|
||||
return newNode
|
||||
}
|
||||
|
||||
// wait stops a function from continuing until the provided channel has processed as
|
||||
// many items as there are dimensions in the provided Node.
|
||||
func wait(c chan int, values Node) {
|
||||
count := len(values)
|
||||
|
||||
<-c
|
||||
for respCnt := 1; respCnt < count; respCnt++ {
|
||||
<-c
|
||||
}
|
||||
}
|
61
kmeans/gokmeans_test.go
Normal file
61
kmeans/gokmeans_test.go
Normal file
@ -0,0 +1,61 @@
|
||||
package gokmeans
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
)
|
||||
|
||||
var observations []Node = []Node{
|
||||
Node{20.0, 20.0, 20.0, 20.0},
|
||||
Node{21.0, 21.0, 21.0, 21.0},
|
||||
Node{100.5, 100.5, 100.5, 100.5},
|
||||
Node{50.1, 50.1, 50.1, 50.1},
|
||||
Node{64.2, 64.2, 64.2, 64.2},
|
||||
}
|
||||
|
||||
var clusters []Node = []Node{
|
||||
Node{20.0, 20.0, 20.0, 20.0},
|
||||
Node{21.0, 21.0, 21.0, 21.0},
|
||||
Node{100.5, 100.5, 100.5, 100.5},
|
||||
Node{50.1, 50.1, 50.1, 50.1},
|
||||
Node{64.2, 64.2, 64.2, 64.2},
|
||||
}
|
||||
|
||||
func TestDistance(t *testing.T) {
|
||||
if distance(observations[3], observations[3]) != 0 {
|
||||
t.Fail()
|
||||
}
|
||||
}
|
||||
|
||||
func TestNearest(t *testing.T) {
|
||||
if Nearest(observations[3], clusters) != 3 {
|
||||
t.Fail()
|
||||
}
|
||||
}
|
||||
|
||||
func TestMeanNode(t *testing.T) {
|
||||
values := []Node{
|
||||
Node{10, 10, 10, 10},
|
||||
Node{20, 20, 20, 20},
|
||||
}
|
||||
|
||||
for _, value := range meanNode(values) {
|
||||
if value != 15 {
|
||||
fmt.Println(value)
|
||||
t.Fail()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestTrain(t *testing.T) {
|
||||
if worked, clusters := Train(observations, 2, 50); !worked || clusters == nil || len(clusters) != 2 {
|
||||
t.Log("Worked:", worked, "\nClusters:", clusters)
|
||||
t.Fail()
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkTrain(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
Train(observations, 2, 50)
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user