1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00

Fixing Comments

This commit is contained in:
Ayush 2020-07-27 15:03:12 +05:30
parent abed408f9b
commit 91a27e3ca0
3 changed files with 71 additions and 35 deletions

View File

@ -36,7 +36,6 @@ func main() {
fmt.Println(decTree.Evaluate(testData))
// Load House Price Data For Regression
regressionData, err := base.ParseCSVToInstances("../datasets/boston_house_prices.csv", false)
if err != nil {
panic(err)

View File

@ -10,9 +10,13 @@ import (
"github.com/sjwhitworth/golearn/base"
)
// The "c" prefix to function names indicates that they were tailored for classification
const (
GINI string = "gini"
ENTROPY string = "entropy"
)
// CNode is Node struct for Decision Tree Classifier
// CNode is Node struct for Decision Tree Classifier.
// It holds the information for each split (which feature to use, what threshold, and which label to assign for each side of the split)
type classifierNode struct {
Left *classifierNode
Right *classifierNode
@ -25,6 +29,8 @@ type classifierNode struct {
}
// CARTDecisionTreeClassifier: Tree struct for Decision Tree Classifier
// It contains the rootNode, as well as all of the hyperparameters chosen by the user.
// It also keeps track of all splits done at the tree level.
type CARTDecisionTreeClassifier struct {
RootNode *classifierNode
criterion string
@ -84,7 +90,7 @@ func entropy(y []int64, labels []int64) (float64, int64) {
return entropy, maxLabel
}
// Split the data into left node and right node based on feature and threshold - only needed for fresh nodes
// Split the data into left node and right node based on feature and threshold
func classifierCreateSplit(data [][]float64, feature int64, y []int64, threshold float64) ([][]float64, [][]float64, []int64, []int64) {
var left [][]float64
var right [][]float64
@ -105,7 +111,8 @@ func classifierCreateSplit(data [][]float64, feature int64, y []int64, threshold
return left, right, lefty, righty
}
// Helper Function to check if data point is unique or not
// Helper Function to check if data point is unique or not.
// We will use this to isolate unique values of a feature
func classifierStringInSlice(a float64, list []float64) bool {
for _, b := range list {
if b == a {
@ -115,7 +122,7 @@ func classifierStringInSlice(a float64, list []float64) bool {
return false
}
// Isolate only unique values. Needed for splitting data.
// Isolate only unique values. This way, we can try only unique splits and not redundant ones.
func classifierFindUnique(data []float64) []float64 {
var unique []float64
for i := range data {
@ -126,7 +133,7 @@ func classifierFindUnique(data []float64) []float64 {
return unique
}
// Isolate only the feature being considered for splitting
// Isolate only the feature being considered for splitting. Reduces the complexity in managing splits.
func classifierGetFeature(data [][]float64, feature int64) []float64 {
var featureVals []float64
for i := range data {
@ -135,7 +142,8 @@ func classifierGetFeature(data [][]float64, feature int64) []float64 {
return featureVals
}
// Function to Create New Decision Tree Classifier
// Function to Create New Decision Tree Classifier.
// It assigns all of the hyperparameters by user into the tree attributes.
func NewDecisionTreeClassifier(criterion string, maxDepth int64, labels []int64) *CARTDecisionTreeClassifier {
var tree CARTDecisionTreeClassifier
tree.criterion = strings.ToLower(criterion)
@ -145,7 +153,8 @@ func NewDecisionTreeClassifier(criterion string, maxDepth int64, labels []int64)
return &tree
}
// Make sure that split being considered has not been done before
// Make sure that split being considered has not been done before.
// Else we will unnecessarily try splits that won't improve Impurity.
func classifierValidate(triedSplits [][]float64, feature int64, threshold float64) bool {
for i := range triedSplits {
split := triedSplits[i]
@ -175,7 +184,7 @@ func classifierReOrderData(featureVal []float64, data [][]float64, y []int64) ([
return dataSorted, ySorted
}
// Change data in Left Node and Right Node based on change in threshold
// Update the left and right side of the split based on the threshold.
func classifierUpdateSplit(left [][]float64, lefty []int64, right [][]float64, righty []int64, feature int64, threshold float64) ([][]float64, []int64, [][]float64, []int64) {
for right[0][feature] < threshold {
@ -188,7 +197,8 @@ func classifierUpdateSplit(left [][]float64, lefty []int64, right [][]float64, r
return left, lefty, right, righty
}
// Fit - Method visible to user to train tree
// Fit - Creates an Emppty Root Node
// Trains the tree by calling recursive function classifierBestSplit
func (tree *CARTDecisionTreeClassifier) Fit(X base.FixedDataGrid) {
var emptyNode classifierNode
@ -199,7 +209,8 @@ func (tree *CARTDecisionTreeClassifier) Fit(X base.FixedDataGrid) {
tree.RootNode = &emptyNode
}
// Iterativly find and record the best split - recursive function
// Iterativly find and record the best split
// Stop If depth reaches maxDepth or nodes are pure
func classifierBestSplit(tree CARTDecisionTreeClassifier, data [][]float64, y []int64, labels []int64, upperNode classifierNode, criterion string, maxDepth int64, depth int64) classifierNode {
// Ensure that we have not reached maxDepth. maxDepth =-1 means split until nodes are pure
@ -214,9 +225,9 @@ func classifierBestSplit(tree CARTDecisionTreeClassifier, data [][]float64, y []
var origGini float64
// Calculate loss based on Criterion Specified by user
if criterion == "gini" {
if criterion == GINI {
origGini, upperNode.LeftLabel = giniImpurity(y, labels)
} else if criterion == "entropy" {
} else if criterion == ENTROPY {
origGini, upperNode.LeftLabel = entropy(y, labels)
} else {
panic("Invalid impurity function, choose from GINI or ENTROPY")
@ -271,10 +282,10 @@ func classifierBestSplit(tree CARTDecisionTreeClassifier, data [][]float64, y []
var leftLabels int64
var rightLabels int64
if criterion == "gini" {
if criterion == GINI {
leftGini, leftLabels = giniImpurity(lefty, labels)
rightGini, rightLabels = giniImpurity(righty, labels)
} else if criterion == "entropy" {
} else if criterion == ENTROPY {
leftGini, leftLabels = entropy(lefty, labels)
rightGini, rightLabels = entropy(righty, labels)
}
@ -336,7 +347,8 @@ func classifierBestSplit(tree CARTDecisionTreeClassifier, data [][]float64, y []
return upperNode
}
// PrintTree : this function prints out entire tree for visualization - visible to user
// String : this function prints out entire tree for visualization.
// Calls a recursive function to print the tree - classifierPrintTreeFromNode
func (tree *CARTDecisionTreeClassifier) String() string {
rootNode := *tree.RootNode
return classifierPrintTreeFromNode(rootNode, "")
@ -377,6 +389,7 @@ func classifierPrintTreeFromNode(tree classifierNode, spacing string) string {
}
// Predict a single data point by traversing the entire tree
// Uses recursive logic to navigate the tree.
func classifierPredictSingle(tree classifierNode, instance []float64) int64 {
if instance[tree.Feature] < tree.Threshold {
if tree.Left == nil {
@ -393,14 +406,15 @@ func classifierPredictSingle(tree classifierNode, instance []float64) int64 {
}
}
// Predict is visible to user. Given test data, they receive predictions for every datapoint.
// Given test data, return predictions for every datapoint. calls classifierPredictFromNode
func (tree *CARTDecisionTreeClassifier) Predict(X_test base.FixedDataGrid) []int64 {
root := *tree.RootNode
test := classifierConvertInstancesToProblemVec(X_test)
return classifierPredictFromNode(root, test)
}
// This function uses the rootnode from Predict. It is invisible to user, but called from predict method.
// This function uses the rootnode from Predict.
// It iterates through every data point and calls the recursive function to give predictions and then summarizes them.
func classifierPredictFromNode(tree classifierNode, test [][]float64) []int64 {
var preds []int64
for i := range test {
@ -411,6 +425,8 @@ func classifierPredictFromNode(tree classifierNode, test [][]float64) []int64 {
}
// Given Test data and label, return the accuracy of the classifier.
// First it retreives predictions from the data, then compares for accuracy.
// Calls classifierEvaluateFromNode
func (tree *CARTDecisionTreeClassifier) Evaluate(test base.FixedDataGrid) float64 {
rootNode := *tree.RootNode
xTest := classifierConvertInstancesToProblemVec(test)
@ -418,6 +434,7 @@ func (tree *CARTDecisionTreeClassifier) Evaluate(test base.FixedDataGrid) float6
return classifierEvaluateFromNode(rootNode, xTest, yTest)
}
// Retrieve predictions and then calculate accuracy.
func classifierEvaluateFromNode(tree classifierNode, xTest [][]float64, yTest []int64) float64 {
preds := classifierPredictFromNode(tree, xTest)
accuracy := 0.0

View File

@ -10,9 +10,14 @@ import (
"github.com/sjwhitworth/golearn/base"
)
// The "r" prefix to all function names indicates that they were tailored to support regression.
const (
MAE string = "mae"
MSE string = "mse"
)
// RNode - Node struct for Decision Tree Regressor
// It holds the information for each split
// Which feature to use, threshold, left prediction and right prediction
type regressorNode struct {
Left *regressorNode
Right *regressorNode
@ -24,6 +29,8 @@ type regressorNode struct {
}
// CARTDecisionTreeRegressor - Tree struct for Decision Tree Regressor
// It contains the rootNode, as well as the hyperparameters chosen by user.
// Also keeps track of splits used at tree level.
type CARTDecisionTreeRegressor struct {
RootNode *regressorNode
criterion string
@ -74,7 +81,7 @@ func mseImpurity(y []float64) (float64, float64) {
return meanSquaredError(y, yHat), yHat
}
// Split the data based on threshold and feature for testing information gain
// Split the data into left and right based on trehsold and feature.
func regressorCreateSplit(data [][]float64, feature int64, y []float64, threshold float64) ([][]float64, [][]float64, []float64, []float64) {
var left [][]float64
var lefty []float64
@ -95,7 +102,8 @@ func regressorCreateSplit(data [][]float64, feature int64, y []float64, threshol
return left, right, lefty, righty
}
// Helper function for finding unique values
// Helper function for finding unique values.
// Used for isolating unique values in a feature.
func regressorStringInSlice(a float64, list []float64) bool {
for _, b := range list {
if b == a {
@ -105,7 +113,8 @@ func regressorStringInSlice(a float64, list []float64) bool {
return false
}
// Return only unique values of a feature
// Isolate only unique values.
// This way we can only try unique splits.
func regressorFindUnique(data []float64) []float64 {
var unique []float64
for i := range data {
@ -116,7 +125,8 @@ func regressorFindUnique(data []float64) []float64 {
return unique
}
// Extract out a single feature from data
// Extract out a single feature from data.
// Reduces complexity in managing splits and sorting
func regressorGetFeature(data [][]float64, feature int64) []float64 {
var featureVals []float64
for i := range data {
@ -125,7 +135,7 @@ func regressorGetFeature(data [][]float64, feature int64) []float64 {
return featureVals
}
// Interface for creating new Decision Tree Regressor - cals rbestSplit()
// Interface for creating new Decision Tree Regressor
func NewDecisionTreeRegressor(criterion string, maxDepth int64) *CARTDecisionTreeRegressor {
var tree CARTDecisionTreeRegressor
tree.maxDepth = maxDepth
@ -134,6 +144,7 @@ func NewDecisionTreeRegressor(criterion string, maxDepth int64) *CARTDecisionTre
}
// Validate that the split being tested has not been done before.
// This prevents redundant splits from hapenning.
func regressorValidate(triedSplits [][]float64, feature int64, threshold float64) bool {
for i := range triedSplits {
split := triedSplits[i]
@ -146,6 +157,7 @@ func regressorValidate(triedSplits [][]float64, feature int64, threshold float64
}
// Re order data based on a feature for optimizing code
// Helps in updating splits without reiterating entire dataset
func regressorReOrderData(featureVal []float64, data [][]float64, y []float64) ([][]float64, []float64) {
s := NewSlice(featureVal)
sort.Sort(s)
@ -176,7 +188,8 @@ func regressorUpdateSplit(left [][]float64, lefty []float64, right [][]float64,
return left, lefty, right, righty
}
// Extra Method for creating simple to use interface. Many params are either redundant for user but are needed only for recursive logic.
// Fit - Build the tree using the data
// Creates empty root node and builds tree by calling regressorBestSplit
func (tree *CARTDecisionTreeRegressor) Fit(X base.FixedDataGrid) {
var emptyNode regressorNode
data := regressorConvertInstancesToProblemVec(X)
@ -187,7 +200,8 @@ func (tree *CARTDecisionTreeRegressor) Fit(X base.FixedDataGrid) {
tree.RootNode = &emptyNode
}
// Essentially the Fit Method - Impelements recursive logic
// Builds the tree by iteratively finding the best split.
// Recursive function - stops if maxDepth is reached or nodes are pure
func regressorBestSplit(tree CARTDecisionTreeRegressor, data [][]float64, y []float64, upperNode regressorNode, criterion string, maxDepth int64, depth int64) regressorNode {
depth++
@ -200,10 +214,12 @@ func regressorBestSplit(tree CARTDecisionTreeRegressor, data [][]float64, y []fl
var bestLoss float64
var origLoss float64
if criterion == "mae" {
if criterion == MAE {
origLoss, upperNode.LeftPred = maeImpurity(y)
} else {
} else if criterion == MSE {
origLoss, upperNode.LeftPred = mseImpurity(y)
} else {
panic("Invalid impurity function, choose from MAE or MSE")
}
bestLoss = origLoss
@ -252,10 +268,10 @@ func regressorBestSplit(tree CARTDecisionTreeRegressor, data [][]float64, y []fl
var leftPred float64
var rightPred float64
if criterion == "mae" {
if criterion == MAE {
leftLoss, leftPred = maeImpurity(lefty)
rightLoss, rightPred = maeImpurity(righty)
} else {
} else if criterion == MSE {
leftLoss, leftPred = mseImpurity(lefty)
rightLoss, rightPred = mseImpurity(righty)
}
@ -312,12 +328,13 @@ func regressorBestSplit(tree CARTDecisionTreeRegressor, data [][]float64, y []fl
return upperNode
}
// Print Tree for Visualtion - calls printTreeFromNode()
// Print Tree for Visualtion - calls regressorPrintTreeFromNode()
func (tree *CARTDecisionTreeRegressor) String() string {
rootNode := *tree.RootNode
return regressorPrintTreeFromNode(rootNode, "")
}
// Recursively explore the entire tree and print out all details such as threshold, feature, prediction
func regressorPrintTreeFromNode(tree regressorNode, spacing string) string {
returnString := ""
returnString += spacing + "Feature "
@ -353,7 +370,8 @@ func regressorPrintTreeFromNode(tree regressorNode, spacing string) string {
return returnString
}
// Predict a single data point
// Predict a single data point by navigating to rootNodes.
// Uses a recursive logic
func regressorPredictSingle(tree regressorNode, instance []float64) float64 {
if instance[tree.Feature] < tree.Threshold {
if tree.Left == nil {
@ -370,14 +388,16 @@ func regressorPredictSingle(tree regressorNode, instance []float64) float64 {
}
}
// Predict method for multiple data points. Calls predictFromNode()
// Predict method for multiple data points.
// First converts input data into usable format, and then calls regressorPredictFromNode
func (tree *CARTDecisionTreeRegressor) Predict(X_test base.FixedDataGrid) []float64 {
root := *tree.RootNode
test := regressorConvertInstancesToProblemVec(X_test)
return regressorPredictFromNode(root, test)
}
// Use tree's root node to print out entire tree
// Use tree's root node to print out entire tree.
// Iterates over all data points and calls regressorPredictSingle to predict individual datapoints.
func regressorPredictFromNode(tree regressorNode, test [][]float64) []float64 {
var preds []float64
for i := range test {