1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00

linear_models: fixed an issue with cgo pointers

This commit is contained in:
Richard Townsend 2017-04-10 00:30:41 +01:00
parent 3e43e74895
commit 8ba2c56945
3 changed files with 205 additions and 36 deletions

View File

@ -0,0 +1,114 @@
/*
* This file contains functions related to creating + freeing
* objects on behalf of the go runtime
*/
#include "linear.h"
#include <stdlib.h>
extern "C" {
/* NOTE: the Golang versions of the structures must call the corresponding
* Free functions via runtime.SetFinalize */
/* CreateCProblem allocates a new struct problem outside of Golang's
* garbage collection. */
struct problem *CreateCProblem() {
auto ret = new problem();
*ret = {}; // < Clear all fields
return ret;
}
/* CreateCModel allocates a new struct model outside of Golang's
* garbage collection. */
struct model *CreateCModel() {
auto ret = new model();
*ret = {}; // < Clear all fields
return ret;
}
/* CreateCParameter allocates a new struct parameter outside of
* Golang's garbage collection.*/
struct parameter *CreateCParameter() {
auto ret = new parameter();
*ret = {};
return ret;
}
/* Free's a previously allocated problem and all its data */
void FreeCProblem(struct problem *p) {
if (p->y != nullptr) {
free(p->y);
p->y = nullptr;
}
if (p->x != nullptr) {
// l is the total count of rows in the problem
// n is the number of values in each row
for (int i = 0; i < p->l; i++) {
if (p->x[i] != nullptr) {
free(p->x[i]);
p->x[i] = nullptr;
}
}
free(p->x);
p->x = nullptr;
}
delete p;
}
/* free's a model with libsvm's internal routines */
void FreeCModel(struct model *m) {
free_model_content(m);
delete m;
}
/* free's a parameter via libsvm */
void FreeCParameter(struct parameter *p) {
destroy_param(p);
delete p;
}
/* Allocates a vector of doubles for storing target values
* outside of Go's garbage collection */
int AllocateLabelsForProblem (struct problem *p, int numValues) {
p->y = reinterpret_cast<double *>(malloc(sizeof(double) * numValues));
return p->y == nullptr;
}
/* Utility method used to set the target value for a particular
* input row */
void AssignLabelForProblem(struct problem *p, int i, double d) {
p->y[i] = d;
}
/* Returns a feature node for a particular row and column. */
struct feature_node *GetFeatureNodeForIndex(struct problem *p, int i, int j) {
return &(p->x[i][j]);
}
/* Allocates a buffer of input rows and the values to fill them. */
int AllocateFeatureNodesForProblem(struct problem *p,
int numSamples, int numValues) {
numValues++; // Extend for terminating element
p->x = reinterpret_cast<struct feature_node **>(
calloc(numSamples, sizeof(struct feature_node *))
);
if (p->x == nullptr) {
return -1;
}
for (int i = 0; i < numSamples; i++) {
p->x[i] = reinterpret_cast<struct feature_node *>(
calloc(numValues, sizeof(struct feature_node))
);
if (p->x[i] == nullptr) {
return -1;
}
// Write the special terminating element, which signals
// to libsvm that there's no more data available on this row.
p->x[i][numValues-1].index = -1;
}
return 0;
}
} /* extern "C" */

View File

@ -0,0 +1,19 @@
#ifndef _H_INTEGRATION_
#define _H_INTEGRATION_
#include "linear.h"
struct problem *CreateCProblem();
void FreeCProblem(struct problem*);
struct model *CreateCModel();
void FreeCModel(struct model*);
struct parameter *CreateCParameter();
void FreeCParameter(struct parameter*);
// Allocates memory outside of golang for describing feature
// vectors.
int AllocateFeatureNodesForProblem(struct problem*, int, int);
int AllocateLabelsForProblem(struct problem *, int);
void AssignLabelForProblem(struct problem *, int, double);
struct feature_node *GetFeatureNodeForIndex(struct problem *, int, int);
#endif

View File

@ -1,24 +1,50 @@
package linear_models
/*
#include "linear.h"
#include "integration.h"
#cgo CFLAGS:
#cgo CXXFLAGS: -std=c++11 -g -O0
#cgo LDFLAGS: -lc++ -g
*/
import "C"
import "fmt"
import "unsafe"
import (
"fmt"
"unsafe"
"runtime"
)
// Problem wraps a libsvm problem struct which describes a classification/
// regression problem. No externally-accessible fields.
type Problem struct {
c_prob C.struct_problem
c_prob *C.struct_problem
}
// Free releases resources associated with a libsvm problem.
func (p *Problem) Free() {
C.FreeCProblem(p.c_prob)
}
// Parameter encasulates all the possible libsvm training options.
// TODO: make user control of these more extensive.
type Parameter struct {
c_param C.struct_parameter
c_param *C.struct_parameter
}
// Free releases resources associated with a Parameter.
func (p *Parameter) Free() {
C.FreeCParameter(p.c_param)
}
// Model encapsulates a trained libsvm model.
type Model struct {
c_model unsafe.Pointer
}
// Free releases resources associated with a trained libsvm model.
func (m *Model) Free() {
C.FreeCModel(m.c_model)
}
const (
L2R_LR = C.L2R_LR
L2R_L2LOSS_SVC_DUAL = C.L2R_L2LOSS_SVC_DUAL
@ -30,8 +56,14 @@ const (
L2R_LR_DUAL = C.L2R_LR_DUAL
)
// NewParameter creates a libsvm parameter structure, which controls
// various aspects of libsvm training.
// For more information on what these parameters do, consult the
// "`train` usage" section of
// https://github.com/cjlin1/liblinear/blob/master/README
func NewParameter(solver_type int, C float64, eps float64) *Parameter {
param := Parameter{}
param := &Parameter{C.CreateCParameter()}
runtime.SetFinalizer(param, (*Parameter).Free)
param.c_param.solver_type = C.int(solver_type)
param.c_param.eps = C.double(eps)
param.c_param.C = C.double(C)
@ -39,30 +71,37 @@ func NewParameter(solver_type int, C float64, eps float64) *Parameter {
param.c_param.weight_label = nil
param.c_param.weight = nil
return &param
return param
}
// NewProblem creates input to libsvm which describes a particular
// regression/classification problem. It requires an array of float values
// and an array of y values.
func NewProblem(X [][]float64, y []float64, bias float64) *Problem {
prob := Problem{}
prob := &Problem{C.CreateCProblem()}
runtime.SetFinalizer(prob, (*Problem).Free)
prob.c_prob.l = C.int(len(X))
prob.c_prob.n = C.int(len(X[0]) + 1)
prob.c_prob.x = convert_features(X, bias)
c_y := make([]C.double, len(y))
convert_features(prob, X, bias)
C.AllocateLabelsForProblem(prob.c_prob, C.int(len(y)))
for i := 0; i < len(y); i++ {
c_y[i] = C.double(y[i])
C.AssignLabelForProblem(prob.c_prob, C.int(i), C.double(y[i]))
}
prob.c_prob.y = &c_y[0]
// Should not go out of scope until the Problem struct
// is cleaned up.
prob.c_prob.bias = C.double(-1)
return &prob
return prob
}
// Train invokes libsvm and returns a trained model.
func Train(prob *Problem, param *Parameter) *Model {
libLinearHookPrintFunc() // Sets up logging
tmpCProb := &prob.c_prob
tmpCParam := &param.c_param
return &Model{unsafe.Pointer(C.train(tmpCProb, tmpCParam))}
out := C.train(prob.c_prob, param.c_param)
m := &Model{out}
runtime.SetFinalizer(m, (*Model).Free)
return m
}
func Export(model *Model, filePath string) error {
@ -79,14 +118,20 @@ func Load(model *Model, filePath string) error {
return fmt.Errorf("Something went wrong")
}
return nil
}
// Predict takes a row of float values corresponding to a particular
// input and returns the regression result.
func Predict(model *Model, x []float64) float64 {
c_x := convert_vector(x, 0)
c_y := C.predict((*C.struct_model)(model.c_model), c_x)
y := float64(c_y)
return y
}
// convert_vector is an internal function used for converting
// dense float64 vectors into the sparse input that libsvm accepts.
func convert_vector(x []float64, bias float64) *C.struct_feature_node {
n_ele := 0
for i := 0; i < len(x); i++ {
@ -113,7 +158,10 @@ func convert_vector(x []float64, bias float64) *C.struct_feature_node {
c_x[j].index = C.int(-1)
return &c_x[0]
}
func convert_features(X [][]float64, bias float64) **C.struct_feature_node {
// convert_features is an internal function used for converting
// dense 2D arrays of float values into the sparse format libsvm accepts.
func convert_features(prob *Problem, X [][]float64, bias float64) {
n_samples := len(X)
n_elements := 0
@ -122,34 +170,22 @@ func convert_features(X [][]float64, bias float64) **C.struct_feature_node {
if X[i][j] != 0.0 {
n_elements++
}
n_elements++ //for bias
n_elements++ // For bias
}
}
x_space := make([]C.struct_feature_node, n_elements+n_samples)
cursor := 0
x := make([]*C.struct_feature_node, n_samples)
var c_x **C.struct_feature_node
C.AllocateFeatureNodesForProblem(prob.c_prob, C.int(n_elements), C.int(n_samples))
for i := 0; i < n_samples; i++ {
x[i] = &x_space[cursor]
for j := 0; j < len(X[i]); j++ {
x_space := C.GetFeatureNodeForIndex(prob.c_prob, C.int(i), C.int(j))
if X[i][j] != 0.0 {
x_space[cursor].index = C.int(j + 1)
x_space[cursor].value = C.double(X[i][j])
cursor++
x_space.index = C.int(j + 1)
x_space.value = C.double(X[i][j])
}
if bias > 0 {
x_space[cursor].index = C.int(0)
x_space[cursor].value = C.double(bias)
cursor++
x_space.index = C.int(0)
x_space.value = C.double(bias)
}
}
x_space[cursor].index = C.int(-1)
cursor++
}
c_x = &x[0]
return c_x
}