mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-26 13:49:14 +08:00
Added Decision Tree Classifier
CART implementation of Decision Tree Classifier, based on Gini Impurity or Entropy, as selected by the user.
This commit is contained in:
parent
3e43e74895
commit
8848652943
495
trees/cart_classifier.go
Normal file
495
trees/cart_classifier.go
Normal file
@ -0,0 +1,495 @@
|
||||
package trees
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"sort"
|
||||
"strings"
|
||||
|
||||
"github.com/sjwhitworth/golearn/base"
|
||||
)
|
||||
|
||||
// CNode is Node struct for Decision Tree Classifier
|
||||
type CNode struct {
|
||||
Left *CNode
|
||||
Right *CNode
|
||||
Threshold float64
|
||||
Feature int64
|
||||
LeftLabel int64
|
||||
RightLabel int64
|
||||
Use_not bool
|
||||
maxDepth int64
|
||||
}
|
||||
|
||||
// CTree: Tree struct for Decision Tree Classifier
|
||||
RootNode *CNode
|
||||
criterion string
|
||||
maxDepth int64
|
||||
labels []int64
|
||||
triedSplits [][]float64
|
||||
}
|
||||
|
||||
// Calculate Gini Impurity of Target Labels
|
||||
func giniImpurity(y []int64, labels []int64) (float64, int64) {
|
||||
nInstances := len(y)
|
||||
gini := 0.0
|
||||
maxLabelCount := 0
|
||||
var maxLabel int64 = 0
|
||||
for label := range labels {
|
||||
numLabel := 0
|
||||
for target := range y {
|
||||
if y[target] == labels[label] {
|
||||
numLabel++
|
||||
}
|
||||
}
|
||||
p := float64(numLabel) / float64(nInstances)
|
||||
gini += p * (1 - p)
|
||||
if numLabel > maxLabelCount {
|
||||
maxLabel = labels[label]
|
||||
maxLabelCount = numLabel
|
||||
}
|
||||
}
|
||||
return gini, maxLabel
|
||||
}
|
||||
|
||||
// Calculate Entropy loss of Target Labels
|
||||
func entropy(y []int64, labels []int64) (float64, int64) {
|
||||
nInstances := len(y)
|
||||
entropy := 0.0
|
||||
maxLabelCount := 0
|
||||
var maxLabel int64 = 0
|
||||
for label := range labels {
|
||||
numLabel := 0
|
||||
for target := range y {
|
||||
if y[target] == labels[label] {
|
||||
numLabel++
|
||||
}
|
||||
}
|
||||
p := float64(numLabel) / float64(nInstances)
|
||||
|
||||
logP := math.Log2(p)
|
||||
if p == 0 {
|
||||
logP = 0
|
||||
}
|
||||
entropy += -p * logP
|
||||
if numLabel > maxLabelCount {
|
||||
maxLabel = labels[label]
|
||||
maxLabelCount = numLabel
|
||||
}
|
||||
}
|
||||
return entropy, maxLabel
|
||||
}
|
||||
|
||||
// Split the data into left node and right node based on feature and threshold - only needed for fresh nodes
|
||||
func testSplit(data [][]float64, feature int64, y []int64, threshold float64) ([][]float64, [][]float64, []int64, []int64) {
|
||||
var left [][]float64
|
||||
var right [][]float64
|
||||
var lefty []int64
|
||||
var righty []int64
|
||||
|
||||
for i := range data {
|
||||
example := data[i]
|
||||
if example[feature] < threshold {
|
||||
left = append(left, example)
|
||||
lefty = append(lefty, y[i])
|
||||
} else {
|
||||
right = append(right, example)
|
||||
righty = append(righty, y[i])
|
||||
}
|
||||
}
|
||||
|
||||
return left, right, lefty, righty
|
||||
}
|
||||
|
||||
// Helper Function to check if data point is unique or not
|
||||
func stringInSlice(a float64, list []float64) bool {
|
||||
for _, b := range list {
|
||||
if b == a {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// Isolate only unique values. Needed for splitting data.
|
||||
func findUnique(data []float64) []float64 {
|
||||
var unique []float64
|
||||
for i := range data {
|
||||
if !stringInSlice(data[i], unique) {
|
||||
unique = append(unique, data[i])
|
||||
}
|
||||
}
|
||||
return unique
|
||||
}
|
||||
|
||||
// Isolate only the feature being considered for splitting
|
||||
func getFeature(data [][]float64, feature int64) []float64 {
|
||||
var featureVals []float64
|
||||
for i := range data {
|
||||
featureVals = append(featureVals, data[i][feature])
|
||||
}
|
||||
return featureVals
|
||||
}
|
||||
|
||||
// Function to Create New Decision Tree Classifier
|
||||
func NewDecisionTreeClassifier(criterion string, maxDepth int64, labels []int64) *CTree {
|
||||
var tree CTree
|
||||
tree.criterion = strings.ToLower(criterion)
|
||||
tree.maxDepth = maxDepth
|
||||
tree.labels = labels
|
||||
|
||||
return &tree
|
||||
}
|
||||
|
||||
// Make sure that split being considered has not been done before
|
||||
func validate(triedSplits [][]float64, feature int64, threshold float64) bool {
|
||||
for i := range triedSplits {
|
||||
split := triedSplits[i]
|
||||
featureTried, thresholdTried := split[0], split[1]
|
||||
if int64(featureTried) == feature && thresholdTried == threshold {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Helper struct for re-rdering data
|
||||
type cSlice struct {
|
||||
sort.Float64Slice
|
||||
Idx []int
|
||||
}
|
||||
|
||||
// Helper function for re-ordering data
|
||||
func (s cSlice) cSwap(i, j int) {
|
||||
s.Float64Slice.Swap(i, j)
|
||||
s.Idx[i], s.Idx[j] = s.Idx[j], s.Idx[i]
|
||||
}
|
||||
|
||||
// Final Helper Function for re-ordering data
|
||||
func cNewSlice(n []float64) *cSlice {
|
||||
s := &cSlice{Float64Slice: sort.Float64Slice(n), Idx: make([]int, len(n))}
|
||||
|
||||
for i := range s.Idx {
|
||||
s.Idx[i] = i
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
// Reorder the data by feature being considered. Optimizes code by reducing the number of times we have to loop over data for splitting
|
||||
func reOrderData(featureVal []float64, data [][]float64, y []int64) ([][]float64, []int64) {
|
||||
s := cNewSlice(featureVal)
|
||||
sort.Sort(s)
|
||||
|
||||
indexes := s.Idx
|
||||
|
||||
var dataSorted [][]float64
|
||||
var ySorted []int64
|
||||
|
||||
for _, index := range indexes {
|
||||
dataSorted = append(dataSorted, data[index])
|
||||
ySorted = append(ySorted, y[index])
|
||||
}
|
||||
|
||||
return dataSorted, ySorted
|
||||
}
|
||||
|
||||
// Change data in Left Node and Right Node based on change in threshold
|
||||
func updateSplit(left [][]float64, lefty []int64, right [][]float64, righty []int64, feature int64, threshold float64) ([][]float64, []int64, [][]float64, []int64) {
|
||||
|
||||
for right[0][feature] < threshold {
|
||||
left = append(left, right[0])
|
||||
right = right[1:]
|
||||
lefty = append(lefty, righty[0])
|
||||
righty = righty[1:]
|
||||
}
|
||||
|
||||
return left, lefty, right, righty
|
||||
}
|
||||
|
||||
// Fit - Method visible to user to train tree
|
||||
func (tree *CTree) Fit(X base.FixedDataGrid) {
|
||||
var emptyNode CNode
|
||||
|
||||
data := classifierConvertInstancesToProblemVec(X)
|
||||
y := classifierConvertInstancesToLabelVec(X)
|
||||
emptyNode = bestSplit(*tree, data, y, tree.labels, emptyNode, tree.criterion, tree.maxDepth, 0)
|
||||
|
||||
tree.RootNode = &emptyNode
|
||||
}
|
||||
|
||||
// Iterativly find and record the best split - recursive function
|
||||
func bestSplit(tree CTree, data [][]float64, y []int64, labels []int64, upperNode CNode, criterion string, maxDepth int64, depth int64) CNode {
|
||||
|
||||
// Ensure that we have not reached maxDepth. maxDepth =-1 means split until nodes are pure
|
||||
depth++
|
||||
|
||||
if maxDepth != -1 && depth > maxDepth {
|
||||
return upperNode
|
||||
}
|
||||
|
||||
numFeatures := len(data[0])
|
||||
var bestGini float64
|
||||
var origGini float64
|
||||
|
||||
// Calculate loss based on Criterion Specified by user
|
||||
if criterion == "gini" {
|
||||
origGini, upperNode.LeftLabel = giniImpurity(y, labels)
|
||||
} else if criterion == "entropy" {
|
||||
origGini, upperNode.LeftLabel = entropy(y, labels)
|
||||
} else {
|
||||
panic("Invalid impurity function, choose from GINI or ENTROPY")
|
||||
}
|
||||
|
||||
bestGini = origGini
|
||||
|
||||
bestLeft := data
|
||||
bestRight := data
|
||||
bestLefty := y
|
||||
bestRighty := y
|
||||
|
||||
numData := len(data)
|
||||
|
||||
bestLeftGini := bestGini
|
||||
bestRightGini := bestGini
|
||||
|
||||
upperNode.Use_not = true
|
||||
|
||||
var leftN CNode
|
||||
var rightN CNode
|
||||
// Iterate over all features
|
||||
for i := 0; i < numFeatures; i++ {
|
||||
featureVal := getFeature(data, int64(i))
|
||||
unique := findUnique(featureVal)
|
||||
sort.Float64s(unique)
|
||||
numUnique := len(unique)
|
||||
|
||||
sortData, sortY := reOrderData(featureVal, data, y)
|
||||
|
||||
firstTime := true
|
||||
|
||||
var left, right [][]float64
|
||||
var lefty, righty []int64
|
||||
// Iterate over all possible thresholds for that feature
|
||||
for j := range unique {
|
||||
if j != (numUnique - 1) {
|
||||
threshold := (unique[j] + unique[j+1]) / 2
|
||||
// Ensure that same split has not been made before
|
||||
if validate(tree.triedSplits, int64(i), threshold) {
|
||||
// We need to split data from fresh when considering new feature for the first time.
|
||||
// Otherwise, we need to update the split by moving data points from left to right.
|
||||
if firstTime {
|
||||
left, right, lefty, righty = testSplit(sortData, int64(i), sortY, threshold)
|
||||
firstTime = false
|
||||
} else {
|
||||
left, lefty, right, righty = updateSplit(left, lefty, right, righty, int64(i), threshold)
|
||||
}
|
||||
|
||||
var leftGini float64
|
||||
var rightGini float64
|
||||
var leftLabels int64
|
||||
var rightLabels int64
|
||||
|
||||
if criterion == "gini" {
|
||||
leftGini, leftLabels = giniImpurity(lefty, labels)
|
||||
rightGini, rightLabels = giniImpurity(righty, labels)
|
||||
} else if criterion == "entropy" {
|
||||
leftGini, leftLabels = entropy(lefty, labels)
|
||||
rightGini, rightLabels = entropy(righty, labels)
|
||||
}
|
||||
// Calculate weighted gini impurity of child nodes
|
||||
subGini := (leftGini * float64(len(left)) / float64(numData)) + (rightGini * float64(len(right)) / float64(numData))
|
||||
|
||||
// If we find a split that reduces impurity
|
||||
if subGini < bestGini {
|
||||
bestGini = subGini
|
||||
bestLeft = left
|
||||
bestRight = right
|
||||
bestLefty = lefty
|
||||
bestRighty = righty
|
||||
upperNode.Threshold = threshold
|
||||
upperNode.Feature = int64(i)
|
||||
|
||||
upperNode.LeftLabel = leftLabels
|
||||
upperNode.RightLabel = rightLabels
|
||||
|
||||
bestLeftGini = leftGini
|
||||
bestRightGini = rightGini
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
// If no split was found, we don't want to use this node, so we will flag it
|
||||
if bestGini == origGini {
|
||||
upperNode.Use_not = false
|
||||
return upperNode
|
||||
}
|
||||
// Until nodes are not pure
|
||||
if bestGini > 0 {
|
||||
|
||||
// If left node is pure, no need to split on left side again
|
||||
if bestLeftGini > 0 {
|
||||
tree.triedSplits = append(tree.triedSplits, []float64{float64(upperNode.Feature), upperNode.Threshold})
|
||||
// Recursive splitting logic
|
||||
leftN = bestSplit(tree, bestLeft, bestLefty, labels, leftN, criterion, maxDepth, depth)
|
||||
if leftN.Use_not == true {
|
||||
upperNode.Left = &leftN
|
||||
}
|
||||
|
||||
}
|
||||
// If right node is pure, no need to split on right side again
|
||||
if bestRightGini > 0 {
|
||||
tree.triedSplits = append(tree.triedSplits, []float64{float64(upperNode.Feature), upperNode.Threshold})
|
||||
// Recursive splitting logic
|
||||
rightN = bestSplit(tree, bestRight, bestRighty, labels, rightN, criterion, maxDepth, depth)
|
||||
if rightN.Use_not == true {
|
||||
upperNode.Right = &rightN
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
// Return the node - contains all information regarding feature and threshold.
|
||||
return upperNode
|
||||
}
|
||||
|
||||
// PrintTree : this function prints out entire tree for visualization - visible to user
|
||||
func (tree *CTree) PrintTree() {
|
||||
rootNode := *tree.RootNode
|
||||
printTreeFromNode(rootNode, "")
|
||||
}
|
||||
|
||||
// Tree struct has root node. That is used to print tree - invisible to user but called from PrintTree
|
||||
func printTreeFromNode(tree CNode, spacing string) float64 {
|
||||
|
||||
fmt.Print(spacing + "Feature ")
|
||||
fmt.Print(tree.Feature)
|
||||
fmt.Print(" < ")
|
||||
fmt.Println(tree.Threshold)
|
||||
|
||||
if tree.Left == nil {
|
||||
fmt.Println(spacing + "---> True")
|
||||
fmt.Print(" " + spacing + "PREDICT ")
|
||||
fmt.Println(tree.LeftLabel)
|
||||
}
|
||||
if tree.Right == nil {
|
||||
fmt.Println(spacing + "---> FALSE")
|
||||
fmt.Print(" " + spacing + "PREDICT ")
|
||||
fmt.Println(tree.RightLabel)
|
||||
}
|
||||
|
||||
if tree.Left != nil {
|
||||
fmt.Println(spacing + "---> True")
|
||||
printTreeFromNode(*tree.Left, spacing+" ")
|
||||
}
|
||||
|
||||
if tree.Right != nil {
|
||||
fmt.Println(spacing + "---> False")
|
||||
printTreeFromNode(*tree.Right, spacing+" ")
|
||||
}
|
||||
|
||||
return 0.0
|
||||
}
|
||||
|
||||
// Predict a single data point by traversing the entire tree
|
||||
func predictSingle(tree CNode, instance []float64) int64 {
|
||||
if instance[tree.Feature] < tree.Threshold {
|
||||
if tree.Left == nil {
|
||||
return tree.LeftLabel
|
||||
} else {
|
||||
return predictSingle(*tree.Left, instance)
|
||||
}
|
||||
} else {
|
||||
if tree.Right == nil {
|
||||
return tree.RightLabel
|
||||
} else {
|
||||
return predictSingle(*tree.Right, instance)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Predict is visible to user. Given test data, they receive predictions for every datapoint.
|
||||
func (tree *CTree) Predict(test [][]float64) []int64 {
|
||||
root := *tree.RootNode
|
||||
|
||||
return predictFromNode(root, test)
|
||||
}
|
||||
|
||||
// This function uses the rootnode from Predict. It is invisible to user, but called from predict method.
|
||||
func predictFromNode(tree CNode, test [][]float64) []int64 {
|
||||
var preds []int64
|
||||
for i := range test {
|
||||
iPred := predictSingle(tree, test[i])
|
||||
preds = append(preds, iPred)
|
||||
}
|
||||
return preds
|
||||
}
|
||||
|
||||
// Given Test data and label, return the accuracy of the classifier. Data has to be in float slice format before feeding.
|
||||
func (tree *CTree) Evaluate(xTest [][]float64, yTest []int64) float64 {
|
||||
rootNode := *tree.RootNode
|
||||
return evaluateFromNode(rootNode, xTest, yTest)
|
||||
}
|
||||
|
||||
func evaluateFromNode(tree CNode, xTest [][]float64, yTest []int64) float64 {
|
||||
preds := predictFromNode(tree, xTest)
|
||||
accuracy := 0.0
|
||||
for i := range preds {
|
||||
if preds[i] == yTest[i] {
|
||||
accuracy++
|
||||
}
|
||||
}
|
||||
accuracy /= float64(len(yTest))
|
||||
return accuracy
|
||||
}
|
||||
|
||||
// Helper function to convert base.FixedDataGrid into required format. Called in Fit
|
||||
func classifierConvertInstancesToProblemVec(X base.FixedDataGrid) [][]float64 {
|
||||
// Allocate problem array
|
||||
_, rows := X.Size()
|
||||
problemVec := make([][]float64, rows)
|
||||
|
||||
// Retrieve numeric non-class Attributes
|
||||
numericAttrs := base.NonClassFloatAttributes(X)
|
||||
numericAttrSpecs := base.ResolveAttributes(X, numericAttrs)
|
||||
|
||||
// Convert each row
|
||||
X.MapOverRows(numericAttrSpecs, func(row [][]byte, rowNo int) (bool, error) {
|
||||
// Allocate a new row
|
||||
probRow := make([]float64, len(numericAttrSpecs))
|
||||
// Read out the row
|
||||
for i, _ := range numericAttrSpecs {
|
||||
probRow[i] = base.UnpackBytesToFloat(row[i])
|
||||
}
|
||||
// Add the row
|
||||
problemVec[rowNo] = probRow
|
||||
return true, nil
|
||||
})
|
||||
return problemVec
|
||||
}
|
||||
|
||||
// Helper function to convert base.FixedDataGrid into required format. Called in Fit
|
||||
func classifierConvertInstancesToLabelVec(X base.FixedDataGrid) []int64 {
|
||||
// Get the class Attributes
|
||||
classAttrs := X.AllClassAttributes()
|
||||
// Only support 1 class Attribute
|
||||
if len(classAttrs) != 1 {
|
||||
panic(fmt.Sprintf("%d ClassAttributes (1 expected)", len(classAttrs)))
|
||||
}
|
||||
// ClassAttribute must be numeric
|
||||
if _, ok := classAttrs[0].(*base.FloatAttribute); !ok {
|
||||
panic(fmt.Sprintf("%s: ClassAttribute must be a FloatAttribute", classAttrs[0]))
|
||||
}
|
||||
// Allocate return structure
|
||||
_, rows := X.Size()
|
||||
// labelVec := make([]float64, rows)
|
||||
labelVec := make([]int64, rows)
|
||||
// Resolve class Attribute specification
|
||||
classAttrSpecs := base.ResolveAttributes(X, classAttrs)
|
||||
X.MapOverRows(classAttrSpecs, func(row [][]byte, rowNo int) (bool, error) {
|
||||
labelVec[rowNo] = int64(base.UnpackBytesToFloat(row[0]))
|
||||
return true, nil
|
||||
})
|
||||
return labelVec
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user