1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00

Merge pull request #1 from FrozenKP/kdtree

add kdtree
This commit is contained in:
Yi-Hsien Chen 2017-04-16 11:20:45 -05:00 committed by GitHub
commit 8547a4335e
4 changed files with 363 additions and 0 deletions

83
kdtree/heap.go Normal file
View File

@ -0,0 +1,83 @@
package kdtree
type heapNode struct {
value []float64
length float64
srcRowNo int
}
type heap struct {
tree []heapNode
}
// newHeap return a pointer of heap.
func newHeap() *heap {
h := &heap{}
h.tree = make([]heapNode, 0)
return &heap{}
}
// maximum return the max heapNode in the heap.
func (h *heap) maximum() heapNode {
if len(h.tree) == 0 {
return heapNode{}
}
return h.tree[0]
}
// extractMax remove the Max heapNode in the heap.
func (h *heap) extractMax() {
if len(h.tree) == 0 {
return
}
h.tree[0] = h.tree[len(h.tree)-1]
h.tree = h.tree[:len(h.tree)-1]
target := 1
for true {
largest := target
if target*2-1 >= len(h.tree) {
break
}
if h.tree[target*2-1].length > h.tree[target-1].length {
largest = target * 2
}
if target*2 < len(h.tree) {
if h.tree[target*2].length > h.tree[largest-1].length {
largest = target*2 + 1
}
}
if largest == target {
break
}
h.tree[largest-1], h.tree[target-1] = h.tree[target-1], h.tree[largest-1]
target = largest
}
}
// insert put a new heapNode into heap.
func (h *heap) insert(value []float64, length float64, srcRowNo int) {
node := heapNode{}
node.length = length
node.srcRowNo = srcRowNo
node.value = make([]float64, len(value))
copy(node.value, value)
h.tree = append(h.tree, node)
target := len(h.tree)
for target != 1 {
if h.tree[(target/2)-1].length >= h.tree[target-1].length {
break
}
h.tree[target-1], h.tree[(target/2)-1] = h.tree[(target/2)-1], h.tree[target-1]
target /= 2
}
}
func (h *heap) size() int {
return len(h.tree)
}

41
kdtree/heap_test.go Normal file
View File

@ -0,0 +1,41 @@
package kdtree
import (
"testing"
. "github.com/smartystreets/goconvey/convey"
)
func TestHeap(t *testing.T) {
h := newHeap()
Convey("Given a heap", t, func() {
Convey("When heap is empty", func() {
size := h.size()
Convey("The size should be 0", func() {
So(size, ShouldEqual, 0)
})
})
Convey("When insert 10 nodes", func() {
for i := 0; i < 10; i++ {
h.insert([]float64{}, float64(i), i)
}
max1 := h.maximum()
h.extractMax()
h.extractMax()
h.extractMax()
max2 := h.maximum()
Convey("The max1.length should be 9", func() {
So(max1.length, ShouldEqual, 9)
})
Convey("The max2.length should be 6", func() {
So(max2.length, ShouldEqual, 6)
})
})
})
}

195
kdtree/kdtree.go Normal file
View File

@ -0,0 +1,195 @@
package kdtree
import (
"errors"
"github.com/gonum/matrix/mat64"
"github.com/sjwhitworth/golearn/metrics/pairwise"
"sort"
)
type node struct {
feature int
value []float64
srcRowNo int
left *node
right *node
}
// Tree is a kdtree.
type Tree struct {
firstDiv *node
data [][]float64
}
type SortData struct {
RowData [][]float64
Data []int
Feature int
}
func (d SortData) Len() int { return len(d.Data) }
func (d SortData) Less(i, j int) bool {
return d.RowData[d.Data[i]][d.Feature] < d.RowData[d.Data[j]][d.Feature]
}
func (d SortData) Swap(i, j int) { d.Data[i], d.Data[j] = d.Data[j], d.Data[i] }
// New return a Tree pointer.
func New() *Tree {
return &Tree{}
}
// Build builds the kdtree with specific data.
func (t *Tree) Build(data [][]float64) error {
if len(data) == 0 {
return errors.New("no input data")
}
size := len(data[0])
for _, v := range data {
if len(v) != size {
return errors.New("amounts of features are not the same")
}
}
t.data = data
newData := make([]int, len(data))
for k, _ := range newData {
newData[k] = k
}
if len(data) == 1 {
t.firstDiv = &node{feature: -1, srcRowNo: 0}
t.firstDiv.value = make([]float64, len(data[0]))
copy(t.firstDiv.value, data[0])
} else {
t.firstDiv = t.buildHandle(newData, 0)
}
return nil
}
// buildHandle builds the kdtree recursively.
func (t *Tree) buildHandle(data []int, featureIndex int) *node {
n := &node{feature: featureIndex}
tmp := SortData{RowData: t.data, Data: data, Feature: featureIndex}
sort.Sort(tmp)
middle := len(data) / 2
n.srcRowNo = data[middle]
n.value = make([]float64, len(t.data[data[middle]]))
copy(n.value, t.data[data[middle]])
divPoint := middle
for i := middle + 1; i < len(data); i++ {
if t.data[data[i]][featureIndex] == t.data[data[middle]][featureIndex] {
divPoint = i
} else {
break
}
}
if divPoint == 1 {
n.left = &node{feature: -1}
n.left.value = make([]float64, len(t.data[data[0]]))
copy(n.left.value, t.data[data[0]])
n.left.srcRowNo = data[0]
} else {
n.left = t.buildHandle(data[:divPoint], (featureIndex+1)%len(t.data[data[0]]))
}
if divPoint == (len(data) - 2) {
n.right = &node{feature: -1}
n.right.value = make([]float64, len(t.data[data[divPoint+1]]))
copy(n.right.value, t.data[data[divPoint+1]])
n.left.srcRowNo = data[divPoint+1]
} else if divPoint != (len(data) - 1) {
n.right = t.buildHandle(data[divPoint+1:], (featureIndex+1)%len(t.data[data[0]]))
}
return n
}
// Search return []int contained k nearest neighbor from
// specific distance function.
func (t *Tree) Search(k int, disType pairwise.PairwiseDistanceFunc, target []float64) ([]int, error) {
if k > len(t.data) {
return []int{}, errors.New("k is largerer than amount of trainData")
}
if len(target) != len(t.data[0]) {
return []int{}, errors.New("amount of features is not equal")
}
h := newHeap()
t.searchHandle(k, disType, target, h, t.firstDiv)
out := make([]int, k)
i := k - 1
for h.size() != 0 {
out[i] = h.maximum().srcRowNo
i--
h.extractMax()
}
return out, nil
}
func (t *Tree) searchHandle(k int, disType pairwise.PairwiseDistanceFunc, target []float64, h *heap, n *node) {
if n.feature == -1 {
vectorX := mat64.NewDense(len(target), 1, target)
vectorY := mat64.NewDense(len(target), 1, n.value)
length := disType.Distance(vectorX, vectorY)
h.insert(n.value, length, n.srcRowNo)
return
}
dir := true
if target[n.feature] <= n.value[n.feature] {
t.searchHandle(k, disType, target, h, n.left)
} else {
dir = false
t.searchHandle(k, disType, target, h, n.right)
}
vectorX := mat64.NewDense(len(target), 1, target)
vectorY := mat64.NewDense(len(target), 1, n.value)
length := disType.Distance(vectorX, vectorY)
if k > h.size() {
h.insert(n.value, length, n.srcRowNo)
if dir {
t.searchAllNode(k, disType, target, h, n.right)
} else {
t.searchAllNode(k, disType, target, h, n.left)
}
} else if h.maximum().length > length {
h.extractMax()
h.insert(n.value, length, n.srcRowNo)
if dir {
t.searchAllNode(k, disType, target, h, n.right)
} else {
t.searchAllNode(k, disType, target, h, n.left)
}
}
}
func (t *Tree) searchAllNode(k int, disType pairwise.PairwiseDistanceFunc, target []float64, h *heap, n *node) {
vectorX := mat64.NewDense(len(target), 1, target)
vectorY := mat64.NewDense(len(target), 1, n.value)
length := disType.Distance(vectorX, vectorY)
if k > h.size() {
h.insert(n.value, length, n.srcRowNo)
} else if h.maximum().length > length {
h.extractMax()
h.insert(n.value, length, n.srcRowNo)
}
if n.left != nil {
t.searchAllNode(k, disType, target, h, n.left)
}
if n.right != nil {
t.searchAllNode(k, disType, target, h, n.right)
}
}

44
kdtree/kdtree_test.go Normal file
View File

@ -0,0 +1,44 @@
package kdtree
import (
"testing"
"github.com/sjwhitworth/golearn/metrics/pairwise"
. "github.com/smartystreets/goconvey/convey"
)
func TestKdtree(t *testing.T) {
kd := New()
Convey("Given a kdtree", t, func() {
data := [][]float64{{2, 3}, {5, 4}, {4, 7}, {8, 1}, {7, 2}, {9, 6}}
kd.Build(data)
euclidean := pairwise.NewEuclidean()
Convey("When k is 3 with euclidean", func() {
result, _ := kd.Search(3, euclidean, []float64{7, 3})
Convey("The result[0] should be 4", func() {
So(result[0], ShouldEqual, 4)
})
Convey("The result[1] should be 3", func() {
So(result[1], ShouldEqual, 3)
})
Convey("The result[2] should be 1", func() {
So(result[2], ShouldEqual, 1)
})
})
Convey("When k is 2 with euclidean", func() {
result, _ := kd.Search(2, euclidean, []float64{7, 3})
Convey("The result[0] should be 4", func() {
So(result[0], ShouldEqual, 4)
})
Convey("The result[1] should be 1", func() {
So(result[1], ShouldEqual, 1)
})
})
})
}