1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-05-03 22:17:14 +08:00

Merge pull request #172 from FrozenKP/master

[kdtree] fixed a bug and change function name
This commit is contained in:
Richard Townsend 2017-04-17 18:05:31 +01:00 committed by GitHub
commit 7a9e119010
2 changed files with 28 additions and 23 deletions

View File

@ -76,10 +76,6 @@ func (t *Tree) buildHandle(data []int, featureIndex int) *node {
sort.Sort(tmp)
middle := len(data) / 2
n.srcRowNo = data[middle]
n.value = make([]float64, len(t.data[data[middle]]))
copy(n.value, t.data[data[middle]])
divPoint := middle
for i := middle + 1; i < len(data); i++ {
if t.data[data[i]][featureIndex] == t.data[data[middle]][featureIndex] {
@ -89,6 +85,10 @@ func (t *Tree) buildHandle(data []int, featureIndex int) *node {
}
}
n.srcRowNo = data[divPoint]
n.value = make([]float64, len(t.data[data[divPoint]]))
copy(n.value, t.data[data[divPoint]])
if divPoint == 1 {
n.left = &node{feature: -1}
n.left.value = make([]float64, len(t.data[data[0]]))
@ -102,37 +102,40 @@ func (t *Tree) buildHandle(data []int, featureIndex int) *node {
n.right = &node{feature: -1}
n.right.value = make([]float64, len(t.data[data[divPoint+1]]))
copy(n.right.value, t.data[data[divPoint+1]])
n.left.srcRowNo = data[divPoint+1]
n.right.srcRowNo = data[divPoint+1]
} else if divPoint != (len(data) - 1) {
n.right = t.buildHandle(data[divPoint+1:], (featureIndex+1)%len(t.data[data[0]]))
} else {
n.right = &node{feature: -2}
}
return n
}
// Search return []int contained k nearest neighbor from
// specific distance function.
func (t *Tree) Search(k int, disType pairwise.PairwiseDistanceFunc, target []float64) ([]int, error) {
// Search return srcRowNo([]int) and length([]float64) contained
// k nearest neighbors from specific distance function.
func (t *Tree) Search(k int, disType pairwise.PairwiseDistanceFunc, target []float64) ([]int, []float64, error) {
if k > len(t.data) {
return []int{}, errors.New("k is largerer than amount of trainData")
return []int{}, []float64{}, errors.New("k is largerer than amount of trainData")
}
if len(target) != len(t.data[0]) {
return []int{}, errors.New("amount of features is not equal")
return []int{}, []float64{}, errors.New("amount of features is not equal")
}
h := newHeap()
t.searchHandle(k, disType, target, h, t.firstDiv)
out := make([]int, k)
srcRowNo := make([]int, k)
length := make([]float64, k)
i := k - 1
for h.size() != 0 {
out[i] = h.maximum().srcRowNo
srcRowNo[i] = h.maximum().srcRowNo
length[i] = h.maximum().length
i--
h.extractMax()
}
return out, nil
return srcRowNo, length, nil
}
func (t *Tree) searchHandle(k int, disType pairwise.PairwiseDistanceFunc, target []float64, h *heap, n *node) {
@ -142,6 +145,8 @@ func (t *Tree) searchHandle(k int, disType pairwise.PairwiseDistanceFunc, target
length := disType.Distance(vectorX, vectorY)
h.insert(n.value, length, n.srcRowNo)
return
} else if n.feature == -2 {
return
}
dir := true
@ -159,22 +164,22 @@ func (t *Tree) searchHandle(k int, disType pairwise.PairwiseDistanceFunc, target
if k > h.size() {
h.insert(n.value, length, n.srcRowNo)
if dir {
t.searchAllNode(k, disType, target, h, n.right)
t.searchAllNodes(k, disType, target, h, n.right)
} else {
t.searchAllNode(k, disType, target, h, n.left)
t.searchAllNodes(k, disType, target, h, n.left)
}
} else if h.maximum().length > length {
h.extractMax()
h.insert(n.value, length, n.srcRowNo)
if dir {
t.searchAllNode(k, disType, target, h, n.right)
t.searchAllNodes(k, disType, target, h, n.right)
} else {
t.searchAllNode(k, disType, target, h, n.left)
t.searchAllNodes(k, disType, target, h, n.left)
}
}
}
func (t *Tree) searchAllNode(k int, disType pairwise.PairwiseDistanceFunc, target []float64, h *heap, n *node) {
func (t *Tree) searchAllNodes(k int, disType pairwise.PairwiseDistanceFunc, target []float64, h *heap, n *node) {
vectorX := mat64.NewDense(len(target), 1, target)
vectorY := mat64.NewDense(len(target), 1, n.value)
length := disType.Distance(vectorX, vectorY)
@ -187,9 +192,9 @@ func (t *Tree) searchAllNode(k int, disType pairwise.PairwiseDistanceFunc, targe
}
if n.left != nil {
t.searchAllNode(k, disType, target, h, n.left)
t.searchAllNodes(k, disType, target, h, n.left)
}
if n.right != nil {
t.searchAllNode(k, disType, target, h, n.right)
t.searchAllNodes(k, disType, target, h, n.right)
}
}

View File

@ -16,7 +16,7 @@ func TestKdtree(t *testing.T) {
euclidean := pairwise.NewEuclidean()
Convey("When k is 3 with euclidean", func() {
result, _ := kd.Search(3, euclidean, []float64{7, 3})
result, _, _ := kd.Search(3, euclidean, []float64{7, 3})
Convey("The result[0] should be 4", func() {
So(result[0], ShouldEqual, 4)
@ -30,7 +30,7 @@ func TestKdtree(t *testing.T) {
})
Convey("When k is 2 with euclidean", func() {
result, _ := kd.Search(2, euclidean, []float64{7, 3})
result, _, _ := kd.Search(2, euclidean, []float64{7, 3})
Convey("The result[0] should be 4", func() {
So(result[0], ShouldEqual, 4)