1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-28 13:48:56 +08:00

Merge pull request #12 from sjwhitworth/metrics

Metrics
This commit is contained in:
Stephen Whitworth 2014-05-03 17:37:51 +01:00
commit 798751c839
13 changed files with 281 additions and 46 deletions

View File

@ -4,6 +4,7 @@ GoLearn
<img src="http://talks.golang.org/2013/advconc/gopherhat.jpg" width=125>
A small start on a machine learning library in Go.
[Doc](http://godoc.org/github.com/sjwhitworth/golearn).
Install
=======

View File

@ -2,6 +2,7 @@ package knn
import (
base "github.com/sjwhitworth/golearn/base"
pairwiseMetrics "github.com/sjwhitworth/golearn/metrics/pairwise"
util "github.com/sjwhitworth/golearn/utilities"
mat "github.com/skelterjohn/go.matrix"
)
@ -34,7 +35,8 @@ func (KNN *KNNClassifier) Predict(vector *mat.DenseMatrix, K int) (string, []int
row := KNN.Data.GetRowVector(i)
//Will put code in to check errs later
eucdistance, _ := util.ComputeDistance(KNN.DistanceFunc, row, vector)
euclidean := pairwiseMetrics.NewEuclidean()
eucdistance, _ := euclidean.Distance(row, vector)
rownumbers[i] = eucdistance
}

View File

@ -1,13 +1,5 @@
package lm
import (
"fmt"
mat "github.com/skelterjohn/go.matrix"
base "golearn/base"
util "golearn/utilities"
"math"
)
type LinearModel struct {
base.BaseRegressor
// base.BaseRegressor
}

View File

@ -0,0 +1,31 @@
package pairwise
import (
"math"
"github.com/gonum/matrix/mat64"
)
type Euclidean struct{}
func NewEuclidean() *Euclidean {
return &Euclidean{}
}
// Compute usual inner product in the sense of euclidean.
func (self *Euclidean) InnerProduct(vectorX *mat64.Dense, vectorY *mat64.Dense) float64 {
result := vectorX.Dot(vectorY)
return result
}
// Compute usual distance in the sense of euclidean.
// Also known as L2 distance.
func (self *Euclidean) Distance(vectorX *mat64.Dense, vectorY *mat64.Dense) float64 {
subVector := mat64.NewDense(0, 0, nil)
subVector.Sub(vectorX, vectorY)
result := self.InnerProduct(subVector, subVector)
return math.Sqrt(result)
}

View File

@ -0,0 +1,36 @@
package pairwise
import (
"testing"
"github.com/gonum/matrix/mat64"
. "github.com/smartystreets/goconvey/convey"
)
func TestEuclidean(t *testing.T) {
var vectorX, vectorY *mat64.Dense
euclidean := NewEuclidean()
Convey("Given two vectors", t, func() {
vectorX = mat64.NewDense(3, 1, []float64{1, 2, 3})
vectorY = mat64.NewDense(3, 1, []float64{2, 4, 5})
Convey("When doing inner product", func() {
result := euclidean.InnerProduct(vectorX, vectorY)
Convey("The result should be 25", func() {
So(result, ShouldEqual, 25)
})
})
Convey("When calculating distance", func() {
result := euclidean.Distance(vectorX, vectorY)
Convey("The result should be 3", func() {
So(result, ShouldEqual, 3)
})
})
})
}

View File

@ -0,0 +1,40 @@
package pairwise
import (
"math"
"github.com/gonum/matrix/mat64"
)
type Manhattan struct{}
func NewManhattan() *Manhattan {
return &Manhattan{}
}
// Manhattan distance, also known as L1 distance.
// Compute sum of absolute values of elements.
func (self *Manhattan) Distance(vectorX *mat64.Dense, vectorY *mat64.Dense) float64 {
var length int
subVector := mat64.NewDense(0, 0, nil)
subVector.Sub(vectorX, vectorY)
r, c := subVector.Dims()
if r == 1 {
// Force transpose to column vector
subVector.TCopy(subVector)
length = c
} else if c == 1 {
length = r
} else {
panic(mat64.ErrShape)
}
result := .0
for i := 0; i < length; i++ {
result += math.Abs(subVector.At(i, 0))
}
return result
}

View File

@ -0,0 +1,42 @@
package pairwise
import (
"testing"
"github.com/gonum/matrix/mat64"
. "github.com/smartystreets/goconvey/convey"
)
func TestManhattan(t *testing.T) {
var vectorX, vectorY *mat64.Dense
manhattan := NewManhattan()
Convey("Given two vectors", t, func() {
vectorX = mat64.NewDense(3, 1, []float64{2, 2, 3})
vectorY = mat64.NewDense(3, 1, []float64{1, 4, 5})
Convey("When calculating distance with column vectors", func() {
result := manhattan.Distance(vectorX, vectorY)
Convey("The result should be 5", func() {
So(result, ShouldEqual, 5)
})
})
Convey("When calculating distance with row vectors", func() {
vectorX.TCopy(vectorX)
vectorY.TCopy(vectorY)
result := manhattan.Distance(vectorX, vectorY)
Convey("The result should be 5", func() {
So(result, ShouldEqual, 5)
})
})
Convey("When calculating distance with row and column vectors", func() {
vectorX.TCopy(vectorX)
So(func() { manhattan.Distance(vectorX, vectorY) }, ShouldPanicWith, mat64.ErrShape)
})
})
}

View File

@ -0,0 +1,2 @@
// Package pairwise implements utilities to evaluate pairwise distances or inner product (via kernel).
package pairwise

View File

@ -0,0 +1,34 @@
package pairwise
import (
"math"
"github.com/gonum/matrix/mat64"
)
type PolyKernel struct {
degree int
}
// Return a d-degree polynomial kernel
func NewPolyKernel(degree int) *PolyKernel {
return &PolyKernel{degree: degree}
}
// Compute inner product through kernel trick
// K(x, y) = (x^T y + 1)^d
func (self *PolyKernel) InnerProduct(vectorX *mat64.Dense, vectorY *mat64.Dense) float64 {
result := vectorX.Dot(vectorY)
result = math.Pow(result+1, float64(self.degree))
return result
}
// Compute distance under the polynomial kernel, maybe no need.
func (self *PolyKernel) Distance(vectorX *mat64.Dense, vectorY *mat64.Dense) float64 {
subVector := mat64.NewDense(0, 0, nil)
subVector.Sub(vectorX, vectorY)
result := self.InnerProduct(subVector, subVector)
return math.Sqrt(result)
}

View File

@ -0,0 +1,36 @@
package pairwise
import (
"testing"
"github.com/gonum/matrix/mat64"
. "github.com/smartystreets/goconvey/convey"
)
func TestPolyKernel(t *testing.T) {
var vectorX, vectorY *mat64.Dense
polyKernel := NewPolyKernel(3)
Convey("Given two vectors", t, func() {
vectorX = mat64.NewDense(3, 1, []float64{1, 2, 3})
vectorY = mat64.NewDense(3, 1, []float64{2, 4, 5})
Convey("When doing inner product", func() {
result := polyKernel.InnerProduct(vectorX, vectorY)
Convey("The result should be 17576", func() {
So(result, ShouldEqual, 17576)
})
})
Convey("When calculating distance", func() {
result := polyKernel.Distance(vectorX, vectorY)
Convey("The result should be 31.622776601683793", func() {
So(result, ShouldEqual, 31.622776601683793)
})
})
})
}

View File

@ -0,0 +1,27 @@
package pairwise
import (
"math"
"github.com/gonum/matrix/mat64"
)
type RBFKernel struct {
gamma float64
}
// Radial Basis Function Kernel
func NewRBFKernel(gamma float64) *RBFKernel {
return &RBFKernel{gamma: gamma}
}
// Compute inner product through kernel trick
// K(x, y) = exp(-gamma * ||x - y||^2)
func (self *RBFKernel) InnerProduct(vectorX *mat64.Dense, vectorY *mat64.Dense) float64 {
euclidean := NewEuclidean()
distance := euclidean.Distance(vectorX, vectorY)
result := math.Exp(-self.gamma * math.Pow(distance, 2))
return result
}

View File

@ -0,0 +1,28 @@
package pairwise
import (
"testing"
"github.com/gonum/matrix/mat64"
. "github.com/smartystreets/goconvey/convey"
)
func TestRBFKernel(t *testing.T) {
var vectorX, vectorY *mat64.Dense
rbfKernel := NewRBFKernel(0.1)
Convey("Given two vectors", t, func() {
vectorX = mat64.NewDense(3, 1, []float64{1, 2, 3})
vectorY = mat64.NewDense(3, 1, []float64{2, 4, 5})
Convey("When doing inner product", func() {
result := rbfKernel.InnerProduct(vectorX, vectorY)
Convey("The result should be 0.4065696597405991", func() {
So(result, ShouldEqual, 0.4065696597405991)
})
})
})
}

View File

@ -1,36 +0,0 @@
package utilities
import (
"fmt"
"math"
mat "github.com/skelterjohn/go.matrix"
)
// Computes the 'distance' between two vectors, where the distance is one of the following methods -
// euclidean (more to come)
func ComputeDistance(metric string, vector *mat.DenseMatrix, testrow *mat.DenseMatrix) (float64, error) {
var sum float64
switch metric {
case "euclidean":
{
difference, err := testrow.MinusDense(vector)
flat := difference.Array()
if err != nil {
fmt.Println(err)
}
for _, i := range flat {
squared := math.Pow(i, 2)
sum += squared
}
eucdistance := math.Sqrt(sum)
return eucdistance, nil
}
default:
return 0.0, fmt.Errorf("ValueError: %s is not an implemented distance method", metric)
}
}