1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-26 13:49:14 +08:00

Search return length for weightedKNN

This commit is contained in:
FrozenKP 2017-04-17 19:47:13 +08:00
parent 7b765a2f18
commit 3a2782ffec
2 changed files with 12 additions and 10 deletions

View File

@ -111,29 +111,31 @@ func (t *Tree) buildHandle(data []int, featureIndex int) *node {
return n
}
// Search return []int contained k nearest neighbor from
// specific distance function.
func (t *Tree) Search(k int, disType pairwise.PairwiseDistanceFunc, target []float64) ([]int, error) {
// Search return srcRowNo([]int) and length([]float64) contained
// k nearest neighbors from specific distance function.
func (t *Tree) Search(k int, disType pairwise.PairwiseDistanceFunc, target []float64) ([]int, []float64, error) {
if k > len(t.data) {
return []int{}, errors.New("k is largerer than amount of trainData")
return []int{}, []float64{}, errors.New("k is largerer than amount of trainData")
}
if len(target) != len(t.data[0]) {
return []int{}, errors.New("amount of features is not equal")
return []int{}, []float64{}, errors.New("amount of features is not equal")
}
h := newHeap()
t.searchHandle(k, disType, target, h, t.firstDiv)
out := make([]int, k)
srcRowNo := make([]int, k)
length := make([]float64, k)
i := k - 1
for h.size() != 0 {
out[i] = h.maximum().srcRowNo
srcRowNo[i] = h.maximum().srcRowNo
length[i] = h.maximum().length
i--
h.extractMax()
}
return out, nil
return srcRowNo, length, nil
}
func (t *Tree) searchHandle(k int, disType pairwise.PairwiseDistanceFunc, target []float64, h *heap, n *node) {

View File

@ -16,7 +16,7 @@ func TestKdtree(t *testing.T) {
euclidean := pairwise.NewEuclidean()
Convey("When k is 3 with euclidean", func() {
result, _ := kd.Search(3, euclidean, []float64{7, 3})
result, _, _ := kd.Search(3, euclidean, []float64{7, 3})
Convey("The result[0] should be 4", func() {
So(result[0], ShouldEqual, 4)
@ -30,7 +30,7 @@ func TestKdtree(t *testing.T) {
})
Convey("When k is 2 with euclidean", func() {
result, _ := kd.Search(2, euclidean, []float64{7, 3})
result, _, _ := kd.Search(2, euclidean, []float64{7, 3})
Convey("The result[0] should be 4", func() {
So(result[0], ShouldEqual, 4)