1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-05-03 22:17:14 +08:00

Merge pull request #20 from sjwhitworth/feature/ifesdjeen/distances2

Remeake of my previous distances branch
This commit is contained in:
Stephen Whitworth 2014-05-05 22:17:23 +01:00
commit 3850153945
7 changed files with 189 additions and 20 deletions

View File

@ -0,0 +1,31 @@
package pairwise
import (
"math"
"github.com/gonum/matrix/mat64"
)
type Chebyshev struct{}
func NewChebyshev() *Chebyshev {
return &Chebyshev{}
}
func (self *Chebyshev) Distance(vectorX *mat64.Dense, vectorY *mat64.Dense) float64 {
r1, c1 := vectorX.Dims()
r2, c2 := vectorY.Dims()
if r1 != r2 || c1 != c2 {
panic(mat64.ErrShape)
}
max := float64(0)
for i := 0; i < r1; i++ {
for j := 0; j < c1; j++ {
max = math.Max(max, math.Abs(vectorX.At(i, j)-vectorY.At(i, j)))
}
}
return max
}

View File

@ -0,0 +1,42 @@
package pairwise
import (
"testing"
"github.com/gonum/matrix/mat64"
. "github.com/smartystreets/goconvey/convey"
)
func TestChebyshev(t *testing.T) {
var vectorX, vectorY *mat64.Dense
chebyshev := NewChebyshev()
Convey("Given two vectors", t, func() {
vectorX = mat64.NewDense(4, 1, []float64{1, 2, 3, 4})
vectorY = mat64.NewDense(4, 1, []float64{-5, -6, 7, 8})
Convey("When calculating distance with two vectors", func() {
result := chebyshev.Distance(vectorX, vectorY)
Convey("The result should be 8", func() {
So(result, ShouldEqual, 8)
})
})
Convey("When calculating distance with row vectors", func() {
vectorX.TCopy(vectorX)
vectorY.TCopy(vectorY)
result := chebyshev.Distance(vectorX, vectorY)
Convey("The result should be 8", func() {
So(result, ShouldEqual, 8)
})
})
Convey("When calculating distance with different dimention matrices", func() {
vectorX.TCopy(vectorX)
So(func() { chebyshev.Distance(vectorX, vectorY) }, ShouldPanicWith, mat64.ErrShape)
})
})
}

View File

@ -0,0 +1,45 @@
package pairwise
import (
"math"
"github.com/gonum/matrix/mat64"
)
type Cranberra struct{}
func NewCranberra() *Cranberra {
return &Cranberra{}
}
func cranberraDistanceStep(num float64, denom float64) float64 {
if num == .0 && denom == .0 {
return .0
} else {
return num / denom
}
}
func (self *Cranberra) Distance(vectorX *mat64.Dense, vectorY *mat64.Dense) float64 {
r1, c1 := vectorX.Dims()
r2, c2 := vectorY.Dims()
if r1 != r2 || c1 != c2 {
panic(mat64.ErrShape)
}
sum := .0
for i := 0; i < r1; i++ {
for j := 0; j < c1; j++ {
p1 := vectorX.At(i, j)
p2 := vectorY.At(i, j)
num := math.Abs(p1 - p2)
denom := math.Abs(p1) + math.Abs(p2)
sum += cranberraDistanceStep(num, denom)
}
}
return sum
}

View File

@ -0,0 +1,51 @@
package pairwise
import (
"testing"
"github.com/gonum/matrix/mat64"
. "github.com/smartystreets/goconvey/convey"
)
func TestCranberrra(t *testing.T) {
var vectorX, vectorY *mat64.Dense
cranberra := NewCranberra()
Convey("Given two vectors that are same", t, func() {
vec := mat64.NewDense(7, 1, []float64{0, 1, -2, 3.4, 5, -6.7, 89})
distance := cranberra.Distance(vec, vec)
Convey("The result should be 0", func() {
So(distance, ShouldEqual, 0)
})
})
Convey("Given two vectors", t, func() {
vectorX = mat64.NewDense(5, 1, []float64{1, 2, 3, 4, 9})
vectorY = mat64.NewDense(5, 1, []float64{-5, -6, 7, 4, 3})
Convey("When calculating distance with two vectors", func() {
result := cranberra.Distance(vectorX, vectorY)
Convey("The result should be 2.9", func() {
So(result, ShouldEqual, 2.9)
})
})
Convey("When calculating distance with row vectors", func() {
vectorX.TCopy(vectorX)
vectorY.TCopy(vectorY)
result := cranberra.Distance(vectorX, vectorY)
Convey("The result should be 2.9", func() {
So(result, ShouldEqual, 2.9)
})
})
Convey("When calculating distance with different dimention matrices", func() {
vectorX.TCopy(vectorX)
So(func() { cranberra.Distance(vectorX, vectorY) }, ShouldPanicWith, mat64.ErrShape)
})
})
}

View File

@ -12,15 +12,14 @@ func NewEuclidean() *Euclidean {
return &Euclidean{}
}
// Compute usual inner product in the sense of euclidean.
// Compute Eucledian inner product.
func (self *Euclidean) InnerProduct(vectorX *mat64.Dense, vectorY *mat64.Dense) float64 {
result := vectorX.Dot(vectorY)
return result
}
// Compute usual distance in the sense of euclidean.
// Also known as L2 distance.
// Compute Euclidean distance (also known as L2 distance).
func (self *Euclidean) Distance(vectorX *mat64.Dense, vectorY *mat64.Dense) float64 {
subVector := mat64.NewDense(0, 0, nil)
subVector.Sub(vectorX, vectorY)

View File

@ -15,26 +15,18 @@ func NewManhattan() *Manhattan {
// Manhattan distance, also known as L1 distance.
// Compute sum of absolute values of elements.
func (self *Manhattan) Distance(vectorX *mat64.Dense, vectorY *mat64.Dense) float64 {
var length int
subVector := mat64.NewDense(0, 0, nil)
subVector.Sub(vectorX, vectorY)
r, c := subVector.Dims()
if r == 1 {
// Force transpose to column vector
subVector.TCopy(subVector)
length = c
} else if c == 1 {
length = r
} else {
r1, c1 := vectorX.Dims()
r2, c2 := vectorY.Dims()
if r1 != r2 || c1 != c2 {
panic(mat64.ErrShape)
}
result := .0
for i := 0; i < length; i++ {
result += math.Abs(subVector.At(i, 0))
}
for i := 0; i < r1; i++ {
for j := 0; j < c1; j++ {
result += math.Abs(vectorX.At(i, j) - vectorY.At(i, j))
}
}
return result
}

View File

@ -11,6 +11,15 @@ func TestManhattan(t *testing.T) {
var vectorX, vectorY *mat64.Dense
manhattan := NewManhattan()
Convey("Given two vectors that are same", t, func() {
vec := mat64.NewDense(7, 1, []float64{0, 1, -2, 3.4, 5, -6.7, 89})
distance := manhattan.Distance(vec, vec)
Convey("The result should be 0", func() {
So(distance, ShouldEqual, 0)
})
})
Convey("Given two vectors", t, func() {
vectorX = mat64.NewDense(3, 1, []float64{2, 2, 3})
vectorY = mat64.NewDense(3, 1, []float64{1, 4, 5})
@ -33,7 +42,7 @@ func TestManhattan(t *testing.T) {
})
})
Convey("When calculating distance with row and column vectors", func() {
Convey("When calculating distance with different dimention matrices", func() {
vectorX.TCopy(vectorX)
So(func() { manhattan.Distance(vectorX, vectorY) }, ShouldPanicWith, mat64.ErrShape)
})