mirror of
https://github.com/sjwhitworth/golearn.git
synced 2025-04-28 13:48:56 +08:00
84 lines
1.9 KiB
Go
84 lines
1.9 KiB
Go
![]() |
package linear_models
|
||
|
|
||
|
import (
|
||
|
"fmt"
|
||
|
"github.com/sjwhitworth/golearn/base"
|
||
|
)
|
||
|
|
||
|
type LinearSVC struct {
|
||
|
param *Parameter
|
||
|
model *Model
|
||
|
}
|
||
|
|
||
|
func NewLinearSVC(loss, penalty string, dual bool, C float64, eps float64) (*LinearSVC, error) {
|
||
|
solver_type := 0
|
||
|
if penalty == "l2" {
|
||
|
if loss == "l1" {
|
||
|
if dual {
|
||
|
solver_type = L2R_L1LOSS_SVC_DUAL
|
||
|
}
|
||
|
} else {
|
||
|
if dual {
|
||
|
solver_type = L2R_L2LOSS_SVC_DUAL
|
||
|
} else {
|
||
|
solver_type = L2R_L2LOSS_SVC
|
||
|
}
|
||
|
}
|
||
|
} else if penalty == "l1" {
|
||
|
if loss == "l2" {
|
||
|
if !dual {
|
||
|
solver_type = L1R_L2LOSS_SVC
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if solver_type == 0 {
|
||
|
panic("Parameter combination")
|
||
|
}
|
||
|
|
||
|
lr := LinearSVC{}
|
||
|
lr.param = NewParameter(solver_type, C, eps)
|
||
|
lr.model = nil
|
||
|
return &lr, nil
|
||
|
}
|
||
|
|
||
|
func (lr *LinearSVC) Fit(X base.FixedDataGrid) error {
|
||
|
problemVec := convertInstancesToProblemVec(X)
|
||
|
labelVec := convertInstancesToLabelVec(X)
|
||
|
prob := NewProblem(problemVec, labelVec, 0)
|
||
|
lr.model = Train(prob, lr.param)
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (lr *LinearSVC) Predict(X base.FixedDataGrid) (base.FixedDataGrid, error) {
|
||
|
|
||
|
// Only support 1 class Attribute
|
||
|
classAttrs := X.AllClassAttributes()
|
||
|
if len(classAttrs) != 1 {
|
||
|
panic(fmt.Sprintf("%d Wrong number of classes", len(classAttrs)))
|
||
|
}
|
||
|
// Generate return structure
|
||
|
ret := base.GeneratePredictionVector(X)
|
||
|
classAttrSpecs := base.ResolveAttributes(ret, classAttrs)
|
||
|
// Retrieve numeric non-class Attributes
|
||
|
numericAttrs := base.NonClassFloatAttributes(X)
|
||
|
numericAttrSpecs := base.ResolveAttributes(X, numericAttrs)
|
||
|
|
||
|
// Allocate row storage
|
||
|
row := make([]float64, len(numericAttrSpecs))
|
||
|
X.MapOverRows(numericAttrSpecs, func(rowBytes [][]byte, rowNo int) (bool, error) {
|
||
|
for i, r := range rowBytes {
|
||
|
row[i] = base.UnpackBytesToFloat(r)
|
||
|
}
|
||
|
val := Predict(lr.model, row)
|
||
|
vals := base.PackFloatToBytes(val)
|
||
|
ret.Set(classAttrSpecs[0], rowNo, vals)
|
||
|
return true, nil
|
||
|
})
|
||
|
|
||
|
return ret, nil
|
||
|
}
|
||
|
|
||
|
func (lr *LinearSVC) String() string {
|
||
|
return "LogisticSVC"
|
||
|
}
|