2014-01-04 19:31:33 +00:00
|
|
|
package main
|
|
|
|
|
|
|
|
import (
|
2014-04-30 08:57:13 +01:00
|
|
|
"fmt"
|
2014-05-09 18:21:31 +01:00
|
|
|
base "github.com/sjwhitworth/golearn/base"
|
|
|
|
evaluation "github.com/sjwhitworth/golearn/evaluation"
|
2014-05-01 21:20:44 +01:00
|
|
|
knn "github.com/sjwhitworth/golearn/knn"
|
2014-04-30 08:57:13 +01:00
|
|
|
)
|
2014-01-04 19:31:33 +00:00
|
|
|
|
2014-04-30 08:57:13 +01:00
|
|
|
func main() {
|
2014-05-09 18:21:31 +01:00
|
|
|
rawData, err := base.ParseCSVToInstances("datasets/iris_headers.csv", true)
|
|
|
|
if err != nil {
|
|
|
|
panic(err)
|
|
|
|
}
|
|
|
|
rawData.Shuffle()
|
2014-01-04 19:31:33 +00:00
|
|
|
//Initialises a new KNN classifier
|
2014-05-09 18:21:31 +01:00
|
|
|
cls := knn.NewKnnClassifier("euclidean", 2)
|
2014-04-30 08:57:13 +01:00
|
|
|
|
2014-05-09 18:21:31 +01:00
|
|
|
//Do a training-test split
|
|
|
|
trainTest := base.InstancesTrainTestSplit(rawData, 0.50)
|
|
|
|
trainData := trainTest[0]
|
|
|
|
testData := trainTest[1]
|
|
|
|
cls.Fit(trainData)
|
2014-01-04 19:31:33 +00:00
|
|
|
|
2014-05-09 18:21:31 +01:00
|
|
|
//Calculates the Euclidean distance and returns the most popular label
|
|
|
|
predictions := cls.Predict(testData)
|
|
|
|
fmt.Println(predictions)
|
|
|
|
|
|
|
|
// Prints precision/recall metrics
|
|
|
|
confusionMat := evaluation.GetConfusionMatrix(testData, predictions)
|
|
|
|
fmt.Println(evaluation.GetSummary(confusionMat))
|
2014-04-30 08:57:13 +01:00
|
|
|
}
|