1
0
mirror of https://github.com/sjwhitworth/golearn.git synced 2025-04-28 13:48:56 +08:00
golearn/utilities/cross_validation.go

90 lines
2.9 KiB
Go
Raw Normal View History

package utilities
import (
"fmt"
mat "github.com/gonum/matrix/mat64"
"math/rand"
"time"
)
func shuffleMatrix(dataset *mat.Dense, numGen *rand.Rand) *mat.Dense {
shuffledSet := mat.DenseCopyOf(dataset)
rowCount, colCount := shuffledSet.Dims()
temp := make([]float64, colCount)
// FisherYates shuffle
for i := 0; i < rowCount; i++ {
j := numGen.Intn(i + 1)
if j != i {
// Make a "hard" copy to avoid pointer craziness.
copy(temp, shuffledSet.RowView(i))
shuffledSet.SetRow(i, shuffledSet.RowView(j))
shuffledSet.SetRow(j, temp)
}
}
return shuffledSet
}
// TrainTestSplit splits input DenseMatrix into subsets for testing.
// The function expects a test size number (int) or percentage (float64), and a random state or nil to get "random" shuffle.
// It returns a list containing the train-test split and an error status.
func TrainTestSplit(size interface{}, randomState interface{}, datasets ...*mat.Dense) ([]*mat.Dense, error) {
// Get number of instances (rows).
instanceCount, _ := datasets[0].Dims()
// Input should be one or two matrices.
dataCount := len(datasets)
if dataCount > 2 {
return nil, fmt.Errorf("Expected 1 or 2 datasets, got %d\n", dataCount)
}
if dataCount == 2 {
// Test for consistency.
labelCount, labelFeatures := datasets[1].Dims()
if labelCount != instanceCount {
return nil, fmt.Errorf("Data and labels must have the same number of instances")
} else if labelFeatures != 1 {
return nil, fmt.Errorf("Label matrix must have single feature")
}
}
var trainSize, testSize int
switch size := size.(type) {
// If size is an integer, treat it as the test data instance count.
case int:
trainSize = instanceCount - size
testSize = size
case float64:
// If size is a float, treat it as a percentage of the instances to be allocated to the test set.
trainSize = int(float64(instanceCount)*(1-size) + 0.5)
testSize = int(float64(instanceCount)*size + 0.5)
default:
return nil, fmt.Errorf("Expected a test instance count (int) or percentage (float64)")
}
// Create a deterministic shuffle, or a "random" one based on current time.
var randSource rand.Source
if seed, ok := randomState.(int); ok {
randSource = rand.NewSource(int64(seed))
} else {
randSource = rand.NewSource(time.Now().Unix())
}
numGen := rand.New(randSource)
// Return slice will hold training and test data and optional labels matrix.
var returnDatasets []*mat.Dense
for _, dataset := range datasets {
_, featureCount := dataset.Dims()
tempMatrix := shuffleMatrix(dataset, numGen)
// Features count is different on data and labels.
returnDatasets = append(returnDatasets, mat.NewDense(trainSize, featureCount, tempMatrix.RawMatrix().Data[:trainSize*featureCount]))
returnDatasets = append(returnDatasets, mat.NewDense(testSize, featureCount, tempMatrix.RawMatrix().Data[trainSize*featureCount:]))
}
return returnDatasets, nil
}