/* * This file is subject to the terms and conditions defined in * file 'LICENSE.md', which is part of this source code package. */ package core import ( "crypto/aes" "crypto/cipher" "crypto/md5" "crypto/rand" "crypto/rc4" "errors" "fmt" "io" "github.com/unidoc/unidoc/common" ) /* * The PDF standard supports encryption of strings and streams. * Section 7.6. */ type PdfCrypt struct { Filter string Subfilter string V int Length int R int O []byte U []byte P int EncryptMetadata bool Id0 string EncryptionKey []byte DecryptedObjects map[PdfObject]bool EncryptedObjects map[PdfObject]bool Authenticated bool // Crypt filters (V4). CryptFilters CryptFilters StreamFilter string StringFilter string } type AccessPermissions struct { Printing bool Modify bool ExtractGraphics bool Annotate bool FillForms bool DisabilityExtract bool // not clear what this means! RotateInsert bool LimitPrintQuality bool } const padding = "\x28\xBF\x4E\x5E\x4E\x75\x8A\x41\x64\x00\x4E\x56\xFF" + "\xFA\x01\x08\x2E\x2E\x00\xB6\xD0\x68\x3E\x80\x2F\x0C" + "\xA9\xFE\x64\x53\x69\x7A" type CryptFilter struct { Cfm string Length int } type CryptFilters map[string]CryptFilter // Load crypt filter information from the encryption dictionary (V4 only). func (this *PdfCrypt) LoadCryptFilters(ed *PdfObjectDictionary) error { this.CryptFilters = CryptFilters{} cf, ok := (*ed)["CF"].(*PdfObjectDictionary) if !ok { return errors.New("Invalid CF") } for name, v := range *cf { dict, ok := v.(*PdfObjectDictionary) if !ok { return fmt.Errorf("Invalid dict in CF (name %s)", name) } if name == "Identity" { common.Log.Debug("ERROR - Cannot overwrite the identity filter - Trying next") continue } // If Type present, should be CryptFilter. if typename, ok := (*dict)["Type"].(*PdfObjectName); ok { if string(*typename) != "CryptFilter" { return fmt.Errorf("CF dict type != CryptFilter (%s)", typename) } } cf := CryptFilter{} // Method. cfMethod := "None" // Default. cfm, ok := (*dict)["CFM"].(*PdfObjectName) if ok { if *cfm == "V2" { cfMethod = "V2" } else if *cfm == "AESV2" { cfMethod = "AESV2" } else { return fmt.Errorf("Unsupported crypt filter (%s)", *cfm) } } if cfMethod != "V2" && cfMethod != "AESV2" { return fmt.Errorf("Unsupported crypt filter (%s)", cfMethod) } cf.Cfm = cfMethod // Length. cf.Length = 0 length, ok := (*dict)["Length"].(*PdfObjectInteger) if ok { if *length%8 != 0 { return fmt.Errorf("Crypt filter length not multiple of 8 (%d)", *length) } // Standard security handler expresses the length in multiples of 8 (16 means 128) // We only deal with standard so far. (Public key not supported yet). if *length < 5 || *length > 16 { if *length == 64 || *length == 128 { common.Log.Debug("STANDARD VIOLATION: Crypt Length appears to be in bits rather than bytes - assuming bits (%d)", *length) *length /= 8 } else { return fmt.Errorf("Crypt filter length not in range 40 - 128 bit (%d)", *length) } } cf.Length = int(*length) } this.CryptFilters[string(name)] = cf } // Cannot be overwritten. this.CryptFilters["Identity"] = CryptFilter{} // StrF strings filter. this.StringFilter = "Identity" if strf, ok := (*ed)["StrF"].(*PdfObjectName); ok { if _, exists := this.CryptFilters[string(*strf)]; !exists { return fmt.Errorf("Crypt filter for StrF not specified in CF dictionary (%s)", *strf) } this.StringFilter = string(*strf) } // StmF streams filter. this.StreamFilter = "Identity" if stmf, ok := (*ed)["StmF"].(*PdfObjectName); ok { if _, exists := this.CryptFilters[string(*stmf)]; !exists { return fmt.Errorf("Crypt filter for StmF not specified in CF dictionary (%s)", *stmf) } this.StreamFilter = string(*stmf) } return nil } // Prepare the document crypt handler based on the encryption dictionary // and trailer dictionary. func PdfCryptMakeNew(ed, trailer *PdfObjectDictionary) (PdfCrypt, error) { crypter := PdfCrypt{} crypter.DecryptedObjects = map[PdfObject]bool{} crypter.EncryptedObjects = map[PdfObject]bool{} crypter.Authenticated = false filter, ok := (*ed)["Filter"].(*PdfObjectName) if !ok { common.Log.Debug("ERROR Crypt dictionary missing required Filter field!") return crypter, errors.New("Required crypt field Filter missing") } if *filter != "Standard" { common.Log.Debug("ERROR Unsupported filter (%s)", *filter) return crypter, errors.New("Unsupported Filter") } crypter.Filter = string(*filter) subfilter, ok := (*ed)["SubFilter"].(*PdfObjectString) if ok { crypter.Subfilter = string(*subfilter) common.Log.Debug("Using subfilter %s", subfilter) } if L, ok := (*ed)["Length"].(*PdfObjectInteger); ok { if (*L % 8) != 0 { common.Log.Debug("ERROR Invalid encryption length") return crypter, errors.New("Invalid encryption length") } crypter.Length = int(*L) } else { crypter.Length = 40 } V, ok := (*ed)["V"].(*PdfObjectInteger) if ok { if *V >= 1 && *V <= 2 { crypter.V = int(*V) // Default algorithm is V2. crypter.CryptFilters = CryptFilters{} crypter.CryptFilters["Default"] = CryptFilter{Cfm: "V2", Length: crypter.Length} } else if *V == 4 { crypter.V = int(*V) if err := crypter.LoadCryptFilters(ed); err != nil { return crypter, err } } else { common.Log.Debug("ERROR Unsupported encryption algo V = %d", *V) return crypter, errors.New("Unsupported algorithm") } } else { crypter.V = 0 } R, ok := (*ed)["R"].(*PdfObjectInteger) if !ok { return crypter, errors.New("Encrypt dictionary missing R") } if *R < 2 || *R > 4 { return crypter, errors.New("Invalid R") } crypter.R = int(*R) O, ok := (*ed)["O"].(*PdfObjectString) if !ok { return crypter, errors.New("Encrypt dictionary missing O") } if len(*O) != 32 { return crypter, fmt.Errorf("Length(O) != 32 (%d)", len(*O)) } crypter.O = []byte(*O) U, ok := (*ed)["U"].(*PdfObjectString) if !ok { return crypter, errors.New("Encrypt dictionary missing U") } if len(*U) != 32 { // Strictly this does not cause an error. // If O is OK and others then can still read the file. common.Log.Debug("Warning: Length(U) != 32 (%d)", len(*U)) //return crypter, errors.New("Length(U) != 32") } crypter.U = []byte(*U) P, ok := (*ed)["P"].(*PdfObjectInteger) if !ok { return crypter, errors.New("Encrypt dictionary missing permissions attr") } crypter.P = int(*P) em, ok := (*ed)["EncryptMetadata"].(*PdfObjectBool) if ok { crypter.EncryptMetadata = bool(*em) } else { crypter.EncryptMetadata = true // True by default. } // Default: empty ID. // Strictly, if file is encrypted, the ID should always be specified // but clearly not everyone is following the specification. id0 := PdfObjectString("") if idArray, ok := (*trailer)["ID"].(*PdfObjectArray); ok { common.Log.Debug("Trailer ID array missing!") id0obj, ok := (*idArray)[0].(*PdfObjectString) if !ok { return crypter, errors.New("Invalid trailer ID") } id0 = *id0obj } crypter.Id0 = string(id0) return crypter, nil } func (this *PdfCrypt) GetAccessPermissions() AccessPermissions { perms := AccessPermissions{} P := this.P if P&(1<<2) > 0 { perms.Printing = true } if P&(1<<3) > 0 { perms.Modify = true } if P&(1<<4) > 0 { perms.ExtractGraphics = true } if P&(1<<5) > 0 { perms.Annotate = true } if P&(1<<8) > 0 { perms.FillForms = true } if P&(1<<9) > 0 { perms.DisabilityExtract = true } if P&(1<<10) > 0 { perms.RotateInsert = true } if P&(1<<11) > 0 { perms.LimitPrintQuality = true } return perms } func (perms AccessPermissions) GetP() int32 { var P int32 = 0 if perms.Printing { // bit 3 P |= (1 << 2) } if perms.Modify { // bit 4 P |= (1 << 3) } if perms.ExtractGraphics { // bit 5 P |= (1 << 4) } if perms.Annotate { // bit 6 P |= (1 << 5) } if perms.FillForms { P |= (1 << 8) // bit 9 } if perms.DisabilityExtract { P |= (1 << 9) // bit 10, what means? } if perms.RotateInsert { P |= (1 << 10) // bit 11 } if perms.LimitPrintQuality { P |= (1 << 11) // bit 12 } return P } // Check whether the specified password can be used to decrypt the // document. func (this *PdfCrypt) authenticate(password []byte) (bool, error) { // Also build the encryption/decryption key. this.Authenticated = false // Try user password. common.Log.Trace("Debugging authentication - user pass") authenticated, err := this.Alg6(password) if err != nil { return false, err } if authenticated { common.Log.Trace("this.Authenticated = True") this.Authenticated = true return true, nil } // Try owner password also. // May not be necessary if only want to get all contents. // (user pass needs to be known or empty). common.Log.Trace("Debugging authentication - owner pass") authenticated, err = this.Alg7(password, password) if err != nil { return false, err } if authenticated { common.Log.Trace("this.Authenticated = True") this.Authenticated = true return true, nil } return false, nil } func (this *PdfCrypt) paddedPass(pass []byte) []byte { key := make([]byte, 32) if len(pass) >= 32 { for i := 0; i < 32; i++ { key[i] = pass[i] } } else { for i := 0; i < len(pass); i++ { key[i] = pass[i] } for i := len(pass); i < 32; i++ { key[i] = padding[i-len(pass)] } } return key } // Generates a key for encrypting a specific object based on the // object and generation number, as well as the document encryption key. func (this *PdfCrypt) makeKey(filter string, objNum, genNum uint32, ekey []byte) ([]byte, error) { cf, ok := this.CryptFilters[filter] if !ok { common.Log.Debug("ERROR Unsupported crypt filter (%s)", filter) return nil, fmt.Errorf("Unsupported crypt filter (%s)", filter) } isAES := false if cf.Cfm == "AESV2" { isAES = true } key := make([]byte, len(ekey)+5) for i := 0; i < len(ekey); i++ { key[i] = ekey[i] } for i := 0; i < 3; i++ { b := byte((objNum >> uint32(8*i)) & 0xff) key[i+len(ekey)] = b } for i := 0; i < 2; i++ { b := byte((genNum >> uint32(8*i)) & 0xff) key[i+len(ekey)+3] = b } if isAES { // If using the AES algorithm, extend the encryption key an // additional 4 bytes by adding the value “sAlT”, which // corresponds to the hexadecimal values 0x73, 0x41, 0x6C, 0x54. key = append(key, 0x73) key = append(key, 0x41) key = append(key, 0x6C) key = append(key, 0x54) } // Take the MD5. h := md5.New() h.Write(key) hashb := h.Sum(nil) if len(ekey)+5 < 16 { return hashb[0 : len(ekey)+5], nil } else { return hashb, nil } } // Check if object has already been processed. func (this *PdfCrypt) isDecrypted(obj PdfObject) bool { _, ok := this.DecryptedObjects[obj] if ok { common.Log.Trace("Already decrypted") return true } else { common.Log.Trace("Not decrypted yet") return false } } // Decrypt a buffer with a selected crypt filter. func (this *PdfCrypt) decryptBytes(buf []byte, filter string, okey []byte) ([]byte, error) { common.Log.Trace("Decrypt bytes") cf, ok := this.CryptFilters[filter] if !ok { common.Log.Debug("ERROR Unsupported crypt filter (%s)", filter) return nil, fmt.Errorf("Unsupported crypt filter (%s)", filter) } cfMethod := cf.Cfm if cfMethod == "V2" { // Standard RC4 algorithm. ciph, err := rc4.NewCipher(okey) if err != nil { return nil, err } common.Log.Trace("RC4 Decrypt: % x", buf) ciph.XORKeyStream(buf, buf) common.Log.Trace("to: % x", buf) return buf, nil } else if cfMethod == "AESV2" { // Strings and streams encrypted with AES shall use a padding // scheme that is described in Internet RFC 2898, PKCS #5: // Password-Based Cryptography Specification Version 2.0; see // the Bibliography. For an original message length of M, // the pad shall consist of 16 - (M mod 16) bytes whose value // shall also be 16 - (M mod 16). // // A 9-byte message has a pad of 7 bytes, each with the value // 0x07. The pad can be unambiguously removed to determine the // original message length when decrypting. Note that the pad is // present when M is evenly divisible by 16; it contains 16 bytes // of 0x10. ciph, err := aes.NewCipher(okey) if err != nil { return nil, err } // If using the AES algorithm, the Cipher Block Chaining (CBC) // mode, which requires an initialization vector, is used. The // block size parameter is set to 16 bytes, and the initialization // vector is a 16-byte random number that is stored as the first // 16 bytes of the encrypted stream or string. if len(buf) < 16 { common.Log.Debug("ERROR AES invalid buf %s", buf) return buf, fmt.Errorf("AES: Buf len < 16 (%d)", len(buf)) } iv := buf[:16] buf = buf[16:] if len(buf)%16 != 0 { common.Log.Debug(" iv (%d): % x", len(iv), iv) common.Log.Debug("buf (%d): % x", len(buf), buf) return buf, fmt.Errorf("AES buf length not multiple of 16 (%d)", len(buf)) } mode := cipher.NewCBCDecrypter(ciph, iv) common.Log.Trace("AES Decrypt (%d): % x", len(buf), buf) common.Log.Trace("chop AES Decrypt (%d): % x", len(buf), buf) mode.CryptBlocks(buf, buf) common.Log.Trace("to (%d): % x", len(buf), buf) //copy(buf[0:], buf[16:]) //common.Log.Debug("chop to (%d): % x", len(buf), buf) return buf, nil } return nil, fmt.Errorf("Unsupported crypt filter method (%s)", cfMethod) } // Decrypt an object with specified key. For numbered objects, // the key argument is not used and a new one is generated based // on the object and generation number. // Traverses through all the subobjects (recursive). // // Does not look up references.. That should be done prior to calling. func (this *PdfCrypt) Decrypt(obj PdfObject, parentObjNum, parentGenNum int64) error { if this.isDecrypted(obj) { return nil } if io, isIndirect := obj.(*PdfIndirectObject); isIndirect { this.DecryptedObjects[io] = true common.Log.Trace("Decrypting indirect %d %d obj!", io.ObjectNumber, io.GenerationNumber) objNum := (*io).ObjectNumber genNum := (*io).GenerationNumber err := this.Decrypt(io.PdfObject, objNum, genNum) if err != nil { return err } return nil } if so, isStream := obj.(*PdfObjectStream); isStream { // Mark as decrypted first to avoid recursive issues. this.DecryptedObjects[so] = true objNum := (*so).ObjectNumber genNum := (*so).GenerationNumber common.Log.Trace("Decrypting stream %d %d !", objNum, genNum) // TODO: Check for crypt filter (V4). // The Crypt filter shall be the first filter in the Filter array entry. dict := so.PdfObjectDictionary streamFilter := "Default" // Default RC4. if this.V >= 4 { streamFilter = this.StreamFilter common.Log.Trace("this.StreamFilter = %s", this.StreamFilter) if filters, ok := (*dict)["Filter"].(*PdfObjectArray); ok { // Crypt filter can only be the first entry. if firstFilter, ok := (*filters)[0].(*PdfObjectName); ok { if *firstFilter == "Crypt" { // Crypt filter overriding the default. // Default option is Identity. streamFilter = "Identity" // Check if valid crypt filter specified in the decode params. if decodeParams, ok := (*dict)["DecodeParms"].(*PdfObjectDictionary); ok { if filterName, ok := (*decodeParams)["Name"].(*PdfObjectName); ok { if _, ok := this.CryptFilters[string(*filterName)]; ok { common.Log.Trace("Using stream filter %s", *filterName) streamFilter = string(*filterName) } } } } } } common.Log.Trace("with %s filter", streamFilter) if streamFilter == "Identity" { // Identity: pass unchanged. return nil } } err := this.Decrypt(so.PdfObjectDictionary, objNum, genNum) if err != nil { return err } okey, err := this.makeKey(streamFilter, uint32(objNum), uint32(genNum), this.EncryptionKey) if err != nil { return err } so.Stream, err = this.decryptBytes(so.Stream, streamFilter, okey) if err != nil { return err } // Update the length based on the decrypted stream. (*dict)["Length"] = MakeInteger(int64(len(so.Stream))) return nil } if s, isString := obj.(*PdfObjectString); isString { common.Log.Trace("Decrypting string!") stringFilter := "Default" if this.V >= 4 { // Currently only support Identity / RC4. common.Log.Trace("with %s filter", this.StringFilter) if this.StringFilter == "Identity" { // Identity: pass unchanged: No action. return nil } else { stringFilter = this.StringFilter } } key, err := this.makeKey(stringFilter, uint32(parentObjNum), uint32(parentGenNum), this.EncryptionKey) if err != nil { return err } // Overwrite the encrypted with decrypted string. decrypted := make([]byte, len(*s)) for i := 0; i < len(*s); i++ { decrypted[i] = (*s)[i] } common.Log.Trace("Decrypt string: %s : % x", decrypted, decrypted) decrypted, err = this.decryptBytes(decrypted, stringFilter, key) if err != nil { return err } *s = PdfObjectString(decrypted) return nil } if a, isArray := obj.(*PdfObjectArray); isArray { for _, o := range *a { err := this.Decrypt(o, parentObjNum, parentGenNum) if err != nil { return err } } return nil } if d, isDict := obj.(*PdfObjectDictionary); isDict { isSig := false if t, hasType := (*d)["Type"]; hasType { typeStr, ok := t.(*PdfObjectName) if ok && *typeStr == "Sig" { isSig = true } } for keyidx, o := range *d { // How can we avoid this check, i.e. implement a more smart // traversal system? if isSig && string(keyidx) == "Contents" { // Leave the Contents of a Signature dictionary. continue } if string(keyidx) != "Parent" && string(keyidx) != "Prev" && string(keyidx) != "Last" { // Check not needed? err := this.Decrypt(o, parentObjNum, parentGenNum) if err != nil { return err } } } return nil } return nil } // Check if object has already been processed. func (this *PdfCrypt) isEncrypted(obj PdfObject) bool { _, ok := this.EncryptedObjects[obj] if ok { common.Log.Trace("Already encrypted") return true } else { common.Log.Trace("Not encrypted yet") return false } } // Encrypt a buffer with the specified crypt filter and key. func (this *PdfCrypt) encryptBytes(buf []byte, filter string, okey []byte) ([]byte, error) { common.Log.Trace("Encrypt bytes") cf, ok := this.CryptFilters[filter] if !ok { common.Log.Debug("ERROR Unsupported crypt filter (%s)", filter) return nil, fmt.Errorf("Unsupported crypt filter (%s)", filter) } cfMethod := cf.Cfm if cfMethod == "V2" { // Standard RC4 algorithm. ciph, err := rc4.NewCipher(okey) if err != nil { return nil, err } common.Log.Trace("RC4 Encrypt: % x", buf) ciph.XORKeyStream(buf, buf) common.Log.Trace("to: % x", buf) return buf, nil } else if cfMethod == "AESV2" { // Strings and streams encrypted with AES shall use a padding // scheme that is described in Internet RFC 2898, PKCS #5: // Password-Based Cryptography Specification Version 2.0; see // the Bibliography. For an original message length of M, // the pad shall consist of 16 - (M mod 16) bytes whose value // shall also be 16 - (M mod 16). // // A 9-byte message has a pad of 7 bytes, each with the value // 0x07. The pad can be unambiguously removed to determine the // original message length when decrypting. Note that the pad is // present when M is evenly divisible by 16; it contains 16 bytes // of 0x10. ciph, err := aes.NewCipher(okey) if err != nil { return nil, err } common.Log.Trace("AES Encrypt (%d): % x", len(buf), buf) // If using the AES algorithm, the Cipher Block Chaining (CBC) // mode, which requires an initialization vector, is used. The // block size parameter is set to 16 bytes, and the initialization // vector is a 16-byte random number that is stored as the first // 16 bytes of the encrypted stream or string. pad := 16 - len(buf)%16 for i := 0; i < pad; i++ { buf = append(buf, byte(pad)) } common.Log.Trace("Padded to %d bytes", len(buf)) // Generate random 16 bytes, place in beginning of buffer. ciphertext := make([]byte, 16+len(buf)) iv := ciphertext[:16] if _, err := io.ReadFull(rand.Reader, iv); err != nil { return nil, err } mode := cipher.NewCBCEncrypter(ciph, iv) mode.CryptBlocks(ciphertext[aes.BlockSize:], buf) buf = ciphertext common.Log.Trace("to (%d): % x", len(buf), buf) return buf, nil } return nil, fmt.Errorf("Unsupported crypt filter method (%s)", cfMethod) } // Encrypt an object with specified key. For numbered objects, // the key argument is not used and a new one is generated based // on the object and generation number. // Traverses through all the subobjects (recursive). // // Does not look up references.. That should be done prior to calling. func (this *PdfCrypt) Encrypt(obj PdfObject, parentObjNum, parentGenNum int64) error { if this.isEncrypted(obj) { return nil } if io, isIndirect := obj.(*PdfIndirectObject); isIndirect { this.EncryptedObjects[io] = true common.Log.Trace("Encrypting indirect %d %d obj!", io.ObjectNumber, io.GenerationNumber) objNum := (*io).ObjectNumber genNum := (*io).GenerationNumber err := this.Encrypt(io.PdfObject, objNum, genNum) if err != nil { return err } return nil } if so, isStream := obj.(*PdfObjectStream); isStream { this.EncryptedObjects[so] = true objNum := (*so).ObjectNumber genNum := (*so).GenerationNumber common.Log.Trace("Encrypting stream %d %d !", objNum, genNum) // TODO: Check for crypt filter (V4). // The Crypt filter shall be the first filter in the Filter array entry. dict := so.PdfObjectDictionary streamFilter := "Default" // Default RC4. if this.V >= 4 { // For now. Need to change when we add support for more than // Identity / RC4. streamFilter = this.StreamFilter common.Log.Trace("this.StreamFilter = %s", this.StreamFilter) if filters, ok := (*dict)["Filter"].(*PdfObjectArray); ok { // Crypt filter can only be the first entry. if firstFilter, ok := (*filters)[0].(*PdfObjectName); ok { if *firstFilter == "Crypt" { // Crypt filter overriding the default. // Default option is Identity. streamFilter = "Identity" // Check if valid crypt filter specified in the decode params. if decodeParams, ok := (*dict)["DecodeParms"].(*PdfObjectDictionary); ok { if filterName, ok := (*decodeParams)["Name"].(*PdfObjectName); ok { if _, ok := this.CryptFilters[string(*filterName)]; ok { common.Log.Trace("Using stream filter %s", *filterName) streamFilter = string(*filterName) } } } } } } common.Log.Trace("with %s filter", streamFilter) if streamFilter == "Identity" { // Identity: pass unchanged. return nil } } err := this.Encrypt(so.PdfObjectDictionary, objNum, genNum) if err != nil { return err } okey, err := this.makeKey(streamFilter, uint32(objNum), uint32(genNum), this.EncryptionKey) if err != nil { return err } so.Stream, err = this.encryptBytes(so.Stream, streamFilter, okey) if err != nil { return err } // Update the length based on the encrypted stream. (*dict)["Length"] = MakeInteger(int64(len(so.Stream))) return nil } if s, isString := obj.(*PdfObjectString); isString { common.Log.Trace("Encrypting string!") stringFilter := "Default" if this.V >= 4 { common.Log.Trace("with %s filter", this.StringFilter) if this.StringFilter == "Identity" { // Identity: pass unchanged: No action. return nil } else { stringFilter = this.StringFilter } } key, err := this.makeKey(stringFilter, uint32(parentObjNum), uint32(parentGenNum), this.EncryptionKey) if err != nil { return err } encrypted := make([]byte, len(*s)) for i := 0; i < len(*s); i++ { encrypted[i] = (*s)[i] } common.Log.Trace("Encrypt string: %s : % x", encrypted, encrypted) encrypted, err = this.encryptBytes(encrypted, stringFilter, key) if err != nil { return err } *s = PdfObjectString(encrypted) return nil } if a, isArray := obj.(*PdfObjectArray); isArray { for _, o := range *a { err := this.Encrypt(o, parentObjNum, parentGenNum) if err != nil { return err } } return nil } if d, isDict := obj.(*PdfObjectDictionary); isDict { isSig := false if t, hasType := (*d)["Type"]; hasType { typeStr, ok := t.(*PdfObjectName) if ok && *typeStr == "Sig" { isSig = true } } for keyidx, o := range *d { // How can we avoid this check, i.e. implement a more smart // traversal system? if isSig && string(keyidx) == "Contents" { // Leave the Contents of a Signature dictionary. continue } if string(keyidx) != "Parent" && string(keyidx) != "Prev" && string(keyidx) != "Last" { // Check not needed? err := this.Encrypt(o, parentObjNum, parentGenNum) if err != nil { return err } } } return nil } return nil } // Algorithm 2: Computing an encryption key. func (this *PdfCrypt) Alg2(pass []byte) []byte { common.Log.Trace("Alg2") key := this.paddedPass(pass) h := md5.New() h.Write(key) // Pass O. h.Write(this.O) // Pass P (Lower order byte first). var p uint32 = uint32(this.P) var pb = []byte{} for i := 0; i < 4; i++ { pb = append(pb, byte(((p >> uint(8*i)) & 0xff))) } h.Write(pb) common.Log.Trace("go P: % x", pb) // Pass ID[0] from the trailer h.Write([]byte(this.Id0)) common.Log.Trace("this.R = %d encryptMetadata %v", this.R, this.EncryptMetadata) if (this.R >= 4) && !this.EncryptMetadata { h.Write([]byte{0xff, 0xff, 0xff, 0xff}) } hashb := h.Sum(nil) if this.R >= 3 { for i := 0; i < 50; i++ { h = md5.New() h.Write(hashb[0 : this.Length/8]) hashb = h.Sum(nil) } } if this.R >= 3 { return hashb[0 : this.Length/8] } return hashb[0:5] } // Create the RC4 encryption key. func (this *PdfCrypt) alg3_key(pass []byte) []byte { h := md5.New() okey := this.paddedPass(pass) h.Write(okey) if this.R >= 3 { for i := 0; i < 50; i++ { hashb := h.Sum(nil) h = md5.New() h.Write(hashb) } } encKey := h.Sum(nil) if this.R == 2 { encKey = encKey[0:5] } else { encKey = encKey[0 : this.Length/8] } return encKey } // Algorithm 3: Computing the encryption dictionary’s O // (owner password) value. func (this *PdfCrypt) Alg3(upass, opass []byte) (PdfObjectString, error) { // Return O string val. O := PdfObjectString("") var encKey []byte if len(opass) > 0 { encKey = this.alg3_key(opass) } else { encKey = this.alg3_key(upass) } ociph, err := rc4.NewCipher(encKey) if err != nil { return O, errors.New("Failed rc4 ciph") } ukey := this.paddedPass(upass) encrypted := make([]byte, len(ukey)) ociph.XORKeyStream(encrypted, ukey) if this.R >= 3 { encKey2 := make([]byte, len(encKey)) for i := 0; i < 19; i++ { for j := 0; j < len(encKey); j++ { encKey2[j] = encKey[j] ^ byte(i+1) } ciph, err := rc4.NewCipher(encKey2) if err != nil { return O, errors.New("Failed rc4 ciph") } ciph.XORKeyStream(encrypted, encrypted) } } O = PdfObjectString(encrypted) return O, nil } // Algorithm 4: Computing the encryption dictionary’s U (user password) // value (Security handlers of revision 2). func (this *PdfCrypt) Alg4(upass []byte) (PdfObjectString, []byte, error) { U := PdfObjectString("") ekey := this.Alg2(upass) ciph, err := rc4.NewCipher(ekey) if err != nil { return U, ekey, errors.New("Failed rc4 ciph") } s := []byte(padding) encrypted := make([]byte, len(s)) ciph.XORKeyStream(encrypted, s) U = PdfObjectString(encrypted) return U, ekey, nil } // Algorithm 5: Computing the encryption dictionary’s U (user password) // value (Security handlers of revision 3 or greater). func (this *PdfCrypt) Alg5(upass []byte) (PdfObjectString, []byte, error) { U := PdfObjectString("") ekey := this.Alg2(upass) h := md5.New() h.Write([]byte(padding)) h.Write([]byte(this.Id0)) hash := h.Sum(nil) common.Log.Trace("Alg5") common.Log.Trace("ekey: % x", ekey) common.Log.Trace("ID: % x", this.Id0) if len(hash) != 16 { return U, ekey, errors.New("Hash length not 16 bytes") } ciph, err := rc4.NewCipher(ekey) if err != nil { return U, ekey, errors.New("Failed rc4 ciph") } encrypted := make([]byte, 16) ciph.XORKeyStream(encrypted, hash) // Do the following 19 times: Take the output from the previous // invocation of the RC4 function and pass it as input to a new // invocation of the function; use an encryption key generated by // taking each byte of the original encryption key obtained in step // (a) and performing an XOR (exclusive or) operation between that // byte and the single-byte value of the iteration counter (from 1 to 19). ekey2 := make([]byte, len(ekey)) for i := 0; i < 19; i++ { for j := 0; j < len(ekey); j++ { ekey2[j] = ekey[j] ^ byte(i+1) } ciph, err = rc4.NewCipher(ekey2) if err != nil { return U, ekey, errors.New("Failed rc4 ciph") } ciph.XORKeyStream(encrypted, encrypted) common.Log.Trace("i = %d, ekey: % x", i, ekey2) common.Log.Trace("i = %d -> % x", i, encrypted) } bb := make([]byte, 32) for i := 0; i < 16; i++ { bb[i] = encrypted[i] } // Append 16 bytes of arbitrary padding to the output from the final // invocation of the RC4 function and store the 32-byte result as // the value of the U entry in the encryption dictionary. _, err = rand.Read(bb[16:32]) if err != nil { return U, ekey, errors.New("Failed to gen rand number") } U = PdfObjectString(bb) return U, ekey, nil } // Algorithm 6: Authenticating the user password func (this *PdfCrypt) Alg6(upass []byte) (bool, error) { var uo PdfObjectString var err error var key []byte if this.R == 2 { uo, key, err = this.Alg4(upass) } else if this.R >= 3 { uo, key, err = this.Alg5(upass) } else { return false, errors.New("invalid R") } if err != nil { return false, err } common.Log.Trace("check: % x == % x ?", string(uo), string(this.U)) uGen := string(uo) // Generated U from specified pass. uDoc := string(this.U) // U from the document. if this.R >= 3 { // comparing on the first 16 bytes in the case of security // handlers of revision 3 or greater), uGen = uGen[0:16] uDoc = uDoc[0:16] } if uGen == uDoc { this.EncryptionKey = key return true, nil } else { return false, nil } } // Algorithm 7: Authenticating the owner password. func (this *PdfCrypt) Alg7(upass, opass []byte) (bool, error) { encKey := this.alg3_key(opass) decrypted := make([]byte, len(this.O)) if this.R == 2 { ciph, err := rc4.NewCipher(encKey) if err != nil { return false, errors.New("Failed cipher") } ciph.XORKeyStream(decrypted, this.O) } else if this.R >= 3 { s := this.O newKey := encKey for i := 0; i < 20; i++ { for j := 0; j < len(encKey); j++ { newKey[j] ^= byte(i) } ciph, err := rc4.NewCipher(newKey) if err != nil { return false, errors.New("Failed cipher") } ciph.XORKeyStream(decrypted, s) s = decrypted } } else { return false, errors.New("invalid R") } if string(decrypted) == string(upass) { // Correct. return true, nil } else { return false, nil } }