mirror of
https://github.com/unidoc/unipdf.git
synced 2025-04-29 13:48:54 +08:00
Moved Matrix code to model/matrix.go
This commit is contained in:
parent
ad83b1c948
commit
da8544e68b
@ -7,8 +7,6 @@ package contentstream
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"math"
|
||||
|
||||
"github.com/unidoc/unidoc/common"
|
||||
"github.com/unidoc/unidoc/pdf/core"
|
||||
@ -22,7 +20,7 @@ type GraphicsState struct {
|
||||
ColorspaceNonStroking model.PdfColorspace
|
||||
ColorStroking model.PdfColor
|
||||
ColorNonStroking model.PdfColor
|
||||
CTM Matrix
|
||||
CTM model.Matrix
|
||||
}
|
||||
|
||||
type GraphicStateStack []GraphicsState
|
||||
@ -208,7 +206,7 @@ func (proc *ContentStreamProcessor) Process(resources *model.PdfPageResources) e
|
||||
proc.graphicsState.ColorspaceNonStroking = model.NewPdfColorspaceDeviceGray()
|
||||
proc.graphicsState.ColorStroking = model.NewPdfColorDeviceGray(0)
|
||||
proc.graphicsState.ColorNonStroking = model.NewPdfColorDeviceGray(0)
|
||||
proc.graphicsState.CTM = IdentityMatrix()
|
||||
proc.graphicsState.CTM = model.IdentityMatrix()
|
||||
|
||||
for _, op := range proc.operations {
|
||||
var err error
|
||||
@ -568,149 +566,8 @@ func (proc *ContentStreamProcessor) handleCommand_cm(op *ContentStreamOperation,
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
m := NewMatrix(f[0], f[1], f[2], f[3], f[4], f[5])
|
||||
m := model.NewMatrix(f[0], f[1], f[2], f[3], f[4], f[5])
|
||||
proc.graphicsState.CTM.Concat(m)
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// Matrix is a linear transform matrix in homogenous coordinates.
|
||||
// PDF coordinate transforms are always affine so we only need 6 of these. See newMatrix.
|
||||
type Matrix [9]float64
|
||||
|
||||
// IdentityMatrix returns the identity transform.
|
||||
func IdentityMatrix() Matrix {
|
||||
return NewMatrix(1, 0, 0, 1, 0, 0)
|
||||
}
|
||||
|
||||
// TranslationMatrix returns a matrix that translates by `tx`, `ty`.
|
||||
func TranslationMatrix(tx, ty float64) Matrix {
|
||||
return NewMatrix(1, 0, 0, 1, tx, ty)
|
||||
}
|
||||
|
||||
// NewMatrix returns an affine transform matrix laid out in homogenous coordinates as
|
||||
// a b 0
|
||||
// c d 0
|
||||
// tx ty 1
|
||||
func NewMatrix(a, b, c, d, tx, ty float64) Matrix {
|
||||
m := Matrix{
|
||||
a, b, 0,
|
||||
c, d, 0,
|
||||
tx, ty, 1,
|
||||
}
|
||||
m.fixup()
|
||||
return m
|
||||
}
|
||||
|
||||
// String returns a string describing `m`.
|
||||
func (m Matrix) String() string {
|
||||
a, b, c, d, tx, ty := m[0], m[1], m[3], m[4], m[6], m[7]
|
||||
return fmt.Sprintf("[%.4f,%.4f,%.4f,%.4f:%.4f,%.4f]", a, b, c, d, tx, ty)
|
||||
}
|
||||
|
||||
// Set sets `m` to affine transform a,b,c,d,tx,ty.
|
||||
func (m *Matrix) Set(a, b, c, d, tx, ty float64) {
|
||||
m[0], m[1] = a, b
|
||||
m[3], m[4] = c, d
|
||||
m[6], m[7] = tx, ty
|
||||
m.fixup()
|
||||
}
|
||||
|
||||
// Concat sets `m` to `m` × `b`.
|
||||
// `b` needs to be created by newMatrix. i.e. It must be an affine transform.
|
||||
// m00 m01 0 b00 b01 0 m00*b00 + m01*b01 m00*b10 + m01*b11 0
|
||||
// m10 m11 0 × b10 b11 0 = m10*b00 + m11*b01 m10*b10 + m11*b11 0
|
||||
// m20 m21 1 b20 b21 1 m20*b00 + m21*b10 + b20 m20*b01 + m21*b11 + b21 1
|
||||
func (m *Matrix) Concat(b Matrix) {
|
||||
*m = Matrix{
|
||||
m[0]*b[0] + m[1]*b[3], m[0]*b[1] + m[1]*b[4], 0,
|
||||
m[3]*b[0] + m[4]*b[3], m[3]*b[1] + m[4]*b[4], 0,
|
||||
m[6]*b[0] + m[7]*b[3] + b[6], m[6]*b[1] + m[7]*b[4] + b[7], 1,
|
||||
}
|
||||
m.fixup()
|
||||
}
|
||||
|
||||
// Mult returns `m` × `b`.
|
||||
func (m Matrix) Mult(b Matrix) Matrix {
|
||||
m.Concat(b)
|
||||
return m
|
||||
}
|
||||
|
||||
// Translate appends a translation of `dx`,`dy` to `m`.
|
||||
// m.Translate(dx, dy) is equivalent to m.Concat(NewMatrix(1, 0, 0, 1, dx, dy))
|
||||
func (m *Matrix) Translate(dx, dy float64) {
|
||||
m[6] += dx
|
||||
m[7] += dy
|
||||
m.fixup()
|
||||
}
|
||||
|
||||
// Translation returns the translation part of `m`.
|
||||
func (m *Matrix) Translation() (float64, float64) {
|
||||
return m[6], m[7]
|
||||
}
|
||||
|
||||
// Translation returns the translation part of `m`.
|
||||
func (m *Matrix) ScalingX() float64 {
|
||||
return math.Hypot(m[0], m[1])
|
||||
}
|
||||
|
||||
// Transform returns coordinates `x`,`y` transformed by `m`.
|
||||
func (m *Matrix) Transform(x, y float64) (float64, float64) {
|
||||
xp := x*m[0] + y*m[1] + m[6]
|
||||
yp := x*m[3] + y*m[4] + m[7]
|
||||
return xp, yp
|
||||
}
|
||||
|
||||
// ScalingFactorX returns X scaling of the affine transform.
|
||||
func (m *Matrix) ScalingFactorX() float64 {
|
||||
return math.Sqrt(m[0]*m[0] + m[1]*m[1])
|
||||
}
|
||||
|
||||
// ScalingFactorY returns X scaling of the affine transform.
|
||||
func (m *Matrix) ScalingFactorY() float64 {
|
||||
return math.Sqrt(m[3]*m[3] + m[4]*m[4])
|
||||
}
|
||||
|
||||
// Angle returns the angle of the affine transform.
|
||||
// For simplicity, we assume the transform is a multiple of 90 degrees.
|
||||
func (m *Matrix) Angle() int {
|
||||
a, b, c, d := m[0], m[1], m[3], m[4]
|
||||
// We are returning θ for
|
||||
// a b cos θ -sin θ
|
||||
// c d = sin θ cos θ
|
||||
if a > 0 && d > 0 {
|
||||
// 1 0
|
||||
// 0 1
|
||||
return 0
|
||||
} else if b < 0 && c > 0 {
|
||||
// 0 1
|
||||
// -1 0
|
||||
return 90
|
||||
} else if a < 0 && d < 0 {
|
||||
// -1 0
|
||||
// 0 -1
|
||||
return 180
|
||||
} else if b > 0 && c < 0 {
|
||||
// 0 -1
|
||||
// 1 0
|
||||
return 270
|
||||
}
|
||||
common.Log.Debug("ERROR: Angle not a mulitple of 90°. m=%s", m)
|
||||
return 0
|
||||
}
|
||||
|
||||
// fixup forces `m` to have reasonable values. It is a guard against crazy values in corrupt PDF
|
||||
// files.
|
||||
// Currently it clamps elements to [-maxAbsNumber, -maxAbsNumber] to avoid floating point exceptions.
|
||||
func (m *Matrix) fixup() {
|
||||
for i, x := range m {
|
||||
if x > maxAbsNumber {
|
||||
m[i] = maxAbsNumber
|
||||
} else if x < -maxAbsNumber {
|
||||
m[i] = -maxAbsNumber
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// largest numbers needed in PDF transforms. Is this correct?
|
||||
const maxAbsNumber = 1e9
|
||||
|
@ -13,7 +13,7 @@ import (
|
||||
"fmt"
|
||||
|
||||
"github.com/unidoc/unidoc/common"
|
||||
"github.com/unidoc/unidoc/pdf/contentstream"
|
||||
"github.com/unidoc/unidoc/pdf/model"
|
||||
)
|
||||
|
||||
// Point defines a point in Cartesian coordinates
|
||||
@ -34,7 +34,7 @@ func (p *Point) Set(x, y float64) {
|
||||
|
||||
// Transform transforms `p` by the affine transformation a, b, c, d, tx, ty.
|
||||
func (p *Point) Transform(a, b, c, d, tx, ty float64) {
|
||||
m := contentstream.NewMatrix(a, b, c, d, tx, ty)
|
||||
m := model.NewMatrix(a, b, c, d, tx, ty)
|
||||
p.transformByMatrix(m)
|
||||
}
|
||||
|
||||
@ -61,7 +61,7 @@ func (p Point) Rotate(theta int) Point {
|
||||
}
|
||||
|
||||
// transformByMatrix transforms `p` by the affine transformation `m`.
|
||||
func (p *Point) transformByMatrix(m contentstream.Matrix) {
|
||||
func (p *Point) transformByMatrix(m model.Matrix) {
|
||||
p.X, p.Y = m.Transform(p.X, p.Y)
|
||||
}
|
||||
|
||||
|
@ -314,7 +314,7 @@ func (to *textObject) nextLine() {
|
||||
// in `f` (page 250).
|
||||
func (to *textObject) setTextMatrix(f []float64) {
|
||||
a, b, c, d, tx, ty := f[0], f[1], f[2], f[3], f[4], f[5]
|
||||
to.Tm = contentstream.NewMatrix(a, b, c, d, tx, ty)
|
||||
to.Tm = model.NewMatrix(a, b, c, d, tx, ty)
|
||||
to.Tlm = to.Tm
|
||||
}
|
||||
|
||||
@ -570,9 +570,9 @@ type textObject struct {
|
||||
gs contentstream.GraphicsState
|
||||
fontStack *fontStacker
|
||||
State *textState
|
||||
Tm contentstream.Matrix // Text matrix. For the character pointer.
|
||||
Tlm contentstream.Matrix // Text line matrix. For the start of line pointer.
|
||||
Texts []XYText // Text gets written here.
|
||||
Tm model.Matrix // Text matrix. For the character pointer.
|
||||
Tlm model.Matrix // Text line matrix. For the start of line pointer.
|
||||
Texts []XYText // Text gets written here.
|
||||
}
|
||||
|
||||
// newTextState returns a default textState.
|
||||
@ -591,8 +591,8 @@ func newTextObject(e *Extractor, gs contentstream.GraphicsState, state *textStat
|
||||
gs: gs,
|
||||
fontStack: fontStack,
|
||||
State: state,
|
||||
Tm: contentstream.IdentityMatrix(),
|
||||
Tlm: contentstream.IdentityMatrix(),
|
||||
Tm: model.IdentityMatrix(),
|
||||
Tlm: model.IdentityMatrix(),
|
||||
}
|
||||
}
|
||||
|
||||
@ -620,7 +620,7 @@ func (to *textObject) renderText(data []byte) error {
|
||||
spaceWidth := spaceMetrics.Wx * glyphTextRatio
|
||||
common.Log.Trace("spaceWidth=%.2f text=%q font=%s fontSize=%.1f", spaceWidth, runes, font, tfs)
|
||||
|
||||
stateMatrix := contentstream.NewMatrix(
|
||||
stateMatrix := model.NewMatrix(
|
||||
tfs*th, 0,
|
||||
0, tfs,
|
||||
0, state.Trise)
|
||||
@ -692,14 +692,14 @@ func (to *textObject) renderText(data []byte) error {
|
||||
const glyphTextRatio = 1.0 / 1000.0
|
||||
|
||||
// translation returns the translation part of `m`.
|
||||
func translation(m contentstream.Matrix) Point {
|
||||
func translation(m model.Matrix) Point {
|
||||
tx, ty := m.Translation()
|
||||
return Point{tx, ty}
|
||||
}
|
||||
|
||||
// translationMatrix returns a matrix that translates by `p`.
|
||||
func translationMatrix(p Point) contentstream.Matrix {
|
||||
return contentstream.TranslationMatrix(p.X, p.Y)
|
||||
func translationMatrix(p Point) model.Matrix {
|
||||
return model.TranslationMatrix(p.X, p.Y)
|
||||
}
|
||||
|
||||
// moveTo moves the start of line pointer by `tx`,`ty` and sets the text pointer to the
|
||||
@ -707,7 +707,7 @@ func translationMatrix(p Point) contentstream.Matrix {
|
||||
// Move to the start of the next line, offset from the start of the current line by (tx, ty).
|
||||
// `tx` and `ty` are in unscaled text space units.
|
||||
func (to *textObject) moveTo(tx, ty float64) {
|
||||
to.Tlm = contentstream.NewMatrix(1, 0, 0, 1, tx, ty).Mult(to.Tlm)
|
||||
to.Tlm = model.NewMatrix(1, 0, 0, 1, tx, ty).Mult(to.Tlm)
|
||||
to.Tm = to.Tlm
|
||||
}
|
||||
|
||||
@ -726,7 +726,7 @@ type XYText struct {
|
||||
// newXYText returns an XYText for text `text` rendered with text rendering matrix `trm` and end
|
||||
// of character device coordinates `end`. `spaceWidth` is our best guess at the width of a space in
|
||||
// the font the text is rendered in device coordinates.
|
||||
func (to *textObject) newXYText(text string, trm contentstream.Matrix, end Point,
|
||||
func (to *textObject) newXYText(text string, trm model.Matrix, end Point,
|
||||
height, spaceWidth float64) XYText {
|
||||
to.e.textCount++
|
||||
theta := trm.Angle()
|
||||
|
154
pdf/model/matrix.go
Normal file
154
pdf/model/matrix.go
Normal file
@ -0,0 +1,154 @@
|
||||
/*
|
||||
* This file is subject to the terms and conditions defined in
|
||||
* file 'LICENSE.md', which is part of this source code package.
|
||||
*/
|
||||
|
||||
package model
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
|
||||
"github.com/unidoc/unidoc/common"
|
||||
)
|
||||
|
||||
// Matrix is a linear transform matrix in homogenous coordinates.
|
||||
// PDF coordinate transforms are always affine so we only need 6 of these. See newMatrix.
|
||||
type Matrix [9]float64
|
||||
|
||||
// IdentityMatrix returns the identity transform.
|
||||
func IdentityMatrix() Matrix {
|
||||
return NewMatrix(1, 0, 0, 1, 0, 0)
|
||||
}
|
||||
|
||||
// TranslationMatrix returns a matrix that translates by `tx`, `ty`.
|
||||
func TranslationMatrix(tx, ty float64) Matrix {
|
||||
return NewMatrix(1, 0, 0, 1, tx, ty)
|
||||
}
|
||||
|
||||
// NewMatrix returns an affine transform matrix laid out in homogenous coordinates as
|
||||
// a b 0
|
||||
// c d 0
|
||||
// tx ty 1
|
||||
func NewMatrix(a, b, c, d, tx, ty float64) Matrix {
|
||||
m := Matrix{
|
||||
a, b, 0,
|
||||
c, d, 0,
|
||||
tx, ty, 1,
|
||||
}
|
||||
m.fixup()
|
||||
return m
|
||||
}
|
||||
|
||||
// String returns a string describing `m`.
|
||||
func (m Matrix) String() string {
|
||||
a, b, c, d, tx, ty := m[0], m[1], m[3], m[4], m[6], m[7]
|
||||
return fmt.Sprintf("[%.4f,%.4f,%.4f,%.4f:%.4f,%.4f]", a, b, c, d, tx, ty)
|
||||
}
|
||||
|
||||
// Set sets `m` to affine transform a,b,c,d,tx,ty.
|
||||
func (m *Matrix) Set(a, b, c, d, tx, ty float64) {
|
||||
m[0], m[1] = a, b
|
||||
m[3], m[4] = c, d
|
||||
m[6], m[7] = tx, ty
|
||||
m.fixup()
|
||||
}
|
||||
|
||||
// Concat sets `m` to `m` × `b`.
|
||||
// `b` needs to be created by newMatrix. i.e. It must be an affine transform.
|
||||
// m00 m01 0 b00 b01 0 m00*b00 + m01*b01 m00*b10 + m01*b11 0
|
||||
// m10 m11 0 × b10 b11 0 = m10*b00 + m11*b01 m10*b10 + m11*b11 0
|
||||
// m20 m21 1 b20 b21 1 m20*b00 + m21*b10 + b20 m20*b01 + m21*b11 + b21 1
|
||||
func (m *Matrix) Concat(b Matrix) {
|
||||
*m = Matrix{
|
||||
m[0]*b[0] + m[1]*b[3], m[0]*b[1] + m[1]*b[4], 0,
|
||||
m[3]*b[0] + m[4]*b[3], m[3]*b[1] + m[4]*b[4], 0,
|
||||
m[6]*b[0] + m[7]*b[3] + b[6], m[6]*b[1] + m[7]*b[4] + b[7], 1,
|
||||
}
|
||||
m.fixup()
|
||||
}
|
||||
|
||||
// Mult returns `m` × `b`.
|
||||
func (m Matrix) Mult(b Matrix) Matrix {
|
||||
m.Concat(b)
|
||||
return m
|
||||
}
|
||||
|
||||
// Translate appends a translation of `dx`,`dy` to `m`.
|
||||
// m.Translate(dx, dy) is equivalent to m.Concat(NewMatrix(1, 0, 0, 1, dx, dy))
|
||||
func (m *Matrix) Translate(dx, dy float64) {
|
||||
m[6] += dx
|
||||
m[7] += dy
|
||||
m.fixup()
|
||||
}
|
||||
|
||||
// Translation returns the translation part of `m`.
|
||||
func (m *Matrix) Translation() (float64, float64) {
|
||||
return m[6], m[7]
|
||||
}
|
||||
|
||||
// Translation returns the translation part of `m`.
|
||||
func (m *Matrix) ScalingX() float64 {
|
||||
return math.Hypot(m[0], m[1])
|
||||
}
|
||||
|
||||
// Transform returns coordinates `x`,`y` transformed by `m`.
|
||||
func (m *Matrix) Transform(x, y float64) (float64, float64) {
|
||||
xp := x*m[0] + y*m[1] + m[6]
|
||||
yp := x*m[3] + y*m[4] + m[7]
|
||||
return xp, yp
|
||||
}
|
||||
|
||||
// ScalingFactorX returns X scaling of the affine transform.
|
||||
func (m *Matrix) ScalingFactorX() float64 {
|
||||
return math.Sqrt(m[0]*m[0] + m[1]*m[1])
|
||||
}
|
||||
|
||||
// ScalingFactorY returns X scaling of the affine transform.
|
||||
func (m *Matrix) ScalingFactorY() float64 {
|
||||
return math.Sqrt(m[3]*m[3] + m[4]*m[4])
|
||||
}
|
||||
|
||||
// Angle returns the angle of the affine transform.
|
||||
// For simplicity, we assume the transform is a multiple of 90 degrees.
|
||||
func (m *Matrix) Angle() int {
|
||||
a, b, c, d := m[0], m[1], m[3], m[4]
|
||||
// We are returning θ for
|
||||
// a b cos θ -sin θ
|
||||
// c d = sin θ cos θ
|
||||
if a > 0 && d > 0 {
|
||||
// 1 0
|
||||
// 0 1
|
||||
return 0
|
||||
} else if b < 0 && c > 0 {
|
||||
// 0 1
|
||||
// -1 0
|
||||
return 90
|
||||
} else if a < 0 && d < 0 {
|
||||
// -1 0
|
||||
// 0 -1
|
||||
return 180
|
||||
} else if b > 0 && c < 0 {
|
||||
// 0 -1
|
||||
// 1 0
|
||||
return 270
|
||||
}
|
||||
common.Log.Debug("ERROR: Angle not a mulitple of 90°. m=%s", m)
|
||||
return 0
|
||||
}
|
||||
|
||||
// fixup forces `m` to have reasonable values. It is a guard against crazy values in corrupt PDF
|
||||
// files.
|
||||
// Currently it clamps elements to [-maxAbsNumber, -maxAbsNumber] to avoid floating point exceptions.
|
||||
func (m *Matrix) fixup() {
|
||||
for i, x := range m {
|
||||
if x > maxAbsNumber {
|
||||
m[i] = maxAbsNumber
|
||||
} else if x < -maxAbsNumber {
|
||||
m[i] = -maxAbsNumber
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// largest numbers needed in PDF transforms. Is this correct?
|
||||
const maxAbsNumber = 1e9
|
Loading…
x
Reference in New Issue
Block a user