core: decouple security handlers with different revisions from PdfCrypt

This commit is contained in:
Denys Smirnov 2018-10-03 07:40:35 +03:00
parent 7e9f3dd7e2
commit 1c19ba9e96
8 changed files with 1096 additions and 1077 deletions

View File

@ -6,19 +6,10 @@
package core
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/md5"
"crypto/rand"
"crypto/rc4"
"crypto/sha256"
"crypto/sha512"
"encoding/binary"
"errors"
"fmt"
"hash"
"io"
"math"
"time"
@ -546,47 +537,30 @@ func (crypt *PdfCrypt) GetAccessPermissions() AccessPermissions {
return crypt.encryptStd.P
}
// Check whether the specified password can be used to decrypt the document.
func (crypt *PdfCrypt) authenticate(password []byte) (bool, error) {
// Also build the encryption/decryption key.
crypt.authenticated = false
func (crypt *PdfCrypt) securityHandler() stdSecurityHandler {
if crypt.encryptStd.R >= 5 {
authenticated, err := crypt.alg2a(password)
if err != nil {
return false, err
}
crypt.authenticated = authenticated
return authenticated, err
return stdHandlerR6{}
}
return stdHandlerR4{
ID0: crypt.id0,
Length: crypt.encrypt.Length,
}
}
// Try user password.
common.Log.Trace("Debugging authentication - user pass")
authenticated, err := crypt.alg6(password)
// Check whether the specified password can be used to decrypt the document.
// Also build the encryption/decryption key.
func (crypt *PdfCrypt) authenticate(password []byte) (bool, error) {
crypt.authenticated = false
h := crypt.securityHandler()
fkey, perm, err := h.Authenticate(&crypt.encryptStd, password)
if err != nil {
return false, err
} else if perm == 0 || len(fkey) == 0 {
return false, nil
}
if authenticated {
common.Log.Trace("this.authenticated = True")
crypt.authenticated = true
return true, nil
}
// Try owner password also.
// May not be necessary if only want to get all contents.
// (user pass needs to be known or empty).
common.Log.Trace("Debugging authentication - owner pass")
authenticated, err = crypt.alg7(password)
if err != nil {
return false, err
}
if authenticated {
common.Log.Trace("this.authenticated = True")
crypt.authenticated = true
return true, nil
}
return false, nil
crypt.authenticated = true
crypt.encryptionKey = fkey
return true, nil
}
// Check access rights and permissions for a specified password. If either user/owner password is specified,
@ -596,68 +570,15 @@ func (crypt *PdfCrypt) authenticate(password []byte) (bool, error) {
// The AccessPermissions shows what access the user has for editing etc.
// An error is returned if there was a problem performing the authentication.
func (crypt *PdfCrypt) checkAccessRights(password []byte) (bool, AccessPermissions, error) {
// Try owner password -> full rights.
var (
isOwner bool
err error
)
if crypt.encryptStd.R >= 5 {
var h []byte
h, err = crypt.alg12(password)
if err != nil {
return false, 0, err
}
isOwner = len(h) != 0
} else {
isOwner, err = crypt.alg7(password)
}
h := crypt.securityHandler()
// TODO(dennwc): it computes an encryption key as well; if necessary, define a new interface method to optimize this
fkey, perm, err := h.Authenticate(&crypt.encryptStd, password)
if err != nil {
return false, 0, err
} else if perm == 0 || len(fkey) == 0 {
return false, 0, nil
}
if isOwner {
// owner -> full rights.
return true, PermOwner, nil
}
// Try user password.
var isUser bool
if crypt.encryptStd.R >= 5 {
var h []byte
h, err = crypt.alg11(password)
if err != nil {
return false, 0, err
}
isUser = len(h) != 0
} else {
isUser, err = crypt.alg6(password)
}
if err != nil {
return false, 0, err
}
if isUser {
// User password specified correctly -> access granted with specified permissions.
return true, crypt.encryptStd.P, nil
}
// Cannot even view the file.
return false, 0, nil
}
func (crypt *PdfCrypt) paddedPass(pass []byte) []byte {
key := make([]byte, 32)
if len(pass) >= 32 {
for i := 0; i < 32; i++ {
key[i] = pass[i]
}
} else {
for i := 0; i < len(pass); i++ {
key[i] = pass[i]
}
for i := len(pass); i < 32; i++ {
key[i] = padding[i-len(pass)]
}
}
return key
return true, perm, nil
}
// Generates a key for encrypting a specific object based on the
@ -1073,724 +994,13 @@ func (crypt *PdfCrypt) Encrypt(obj PdfObject, parentObjNum, parentGenNum int64)
return nil
}
// aesZeroIV allocates a zero-filled buffer that serves as an initialization vector for AESv3.
func (crypt *PdfCrypt) aesZeroIV() []byte {
if crypt.ivAESZero == nil {
crypt.ivAESZero = make([]byte, aes.BlockSize)
}
return crypt.ivAESZero
}
// alg2a retrieves the encryption key from an encrypted document (R >= 5).
// It returns false if the password was wrong.
// 7.6.4.3.2 Algorithm 2.A (page 83)
func (crypt *PdfCrypt) alg2a(pass []byte) (bool, error) {
// O & U: 32 byte hash + 8 byte Validation Salt + 8 byte Key Salt
// step a: Unicode normalization
// TODO(dennwc): make sure that UTF-8 strings are normalized
// step b: truncate to 127 bytes
if len(pass) > 127 {
pass = pass[:127]
}
// step c: test pass against the owner key
h, err := crypt.alg12(pass)
if err != nil {
return false, err
}
var (
data []byte // data to hash
ekey []byte // encrypted file key
ukey []byte // user key; set only when using owner's password
)
if len(h) != 0 {
// owner password valid
// step d: compute an intermediate owner key
str := make([]byte, len(pass)+8+48)
i := copy(str, pass)
i += copy(str[i:], crypt.encryptStd.O[40:48]) // owner Key Salt
i += copy(str[i:], crypt.encryptStd.U[0:48])
data = str
ekey = crypt.encryptStd.OE
ukey = crypt.encryptStd.U[0:48]
} else {
// check user password
h, err = crypt.alg11(pass)
if err == nil && len(h) == 0 {
// try default password
h, err = crypt.alg11([]byte(""))
}
if err != nil {
return false, err
} else if len(h) == 0 {
// wrong password
return false, nil
}
// step e: compute an intermediate user key
str := make([]byte, len(pass)+8)
i := copy(str, pass)
i += copy(str[i:], crypt.encryptStd.U[40:48]) // user Key Salt
data = str
ekey = crypt.encryptStd.UE
ukey = nil
}
ekey = ekey[:32]
// intermediate key
ikey := crypt.alg2b(data, pass, ukey)
ac, err := aes.NewCipher(ikey[:32])
if err != nil {
panic(err)
}
iv := crypt.aesZeroIV()
cbc := cipher.NewCBCDecrypter(ac, iv)
fkey := make([]byte, 32)
cbc.CryptBlocks(fkey, ekey)
crypt.encryptionKey = fkey
if crypt.encryptStd.R == 5 {
return true, nil
}
return crypt.alg13(fkey)
}
// alg2b computes a hash for R=5 and R=6.
func (crypt *PdfCrypt) alg2b(data, pwd, userKey []byte) []byte {
if crypt.encryptStd.R == 5 {
return alg2b_R5(data)
}
return alg2b(data, pwd, userKey)
}
// alg2b_R5 computes a hash for R=5, used in a deprecated extension.
// It's used the same way as a hash described in Algorithm 2.B, but it doesn't use the original password
// and the user key to calculate the hash.
func alg2b_R5(data []byte) []byte {
h := sha256.New()
h.Write(data)
return h.Sum(nil)
}
// repeat repeats first n bytes of buf until the end of the buffer.
// It assumes that the length of buf is a multiple of n.
func repeat(buf []byte, n int) {
bp := n
for bp < len(buf) {
copy(buf[bp:], buf[:bp])
bp *= 2
}
}
// alg2b computes a hash for R=6.
// 7.6.4.3.3 Algorithm 2.B (page 83)
func alg2b(data, pwd, userKey []byte) []byte {
var (
s256, s384, s512 hash.Hash
)
s256 = sha256.New()
hbuf := make([]byte, 64)
h := s256
h.Write(data)
K := h.Sum(hbuf[:0])
buf := make([]byte, 64*(127+64+48))
round := func(rnd int) (E []byte) {
// step a: repeat pass+K 64 times
n := len(pwd) + len(K) + len(userKey)
part := buf[:n]
i := copy(part, pwd)
i += copy(part[i:], K[:])
i += copy(part[i:], userKey)
if i != n {
panic("wrong size")
}
K1 := buf[:n*64]
repeat(K1, n)
// step b: encrypt K1 with AES-128 CBC
ac, err := aes.NewCipher(K[0:16])
if err != nil {
panic(err)
}
cbc := cipher.NewCBCEncrypter(ac, K[16:32])
cbc.CryptBlocks(K1, K1)
E = K1
// step c: use 16 bytes of E as big-endian int, select the next hash
b := 0
for i := 0; i < 16; i++ {
b += int(E[i] % 3)
}
var h hash.Hash
switch b % 3 {
case 0:
h = s256
case 1:
if s384 == nil {
s384 = sha512.New384()
}
h = s384
case 2:
if s512 == nil {
s512 = sha512.New()
}
h = s512
}
// step d: take the hash of E, use as a new K
h.Reset()
h.Write(E)
K = h.Sum(hbuf[:0])
return E
}
for i := 0; ; {
E := round(i)
b := uint8(E[len(E)-1])
// from the spec, it appears that i should be incremented after
// the test, but that doesn't match what Adobe does
i++
if i >= 64 && b <= uint8(i-32) {
break
}
}
return K[:32]
}
// alg2 computes an encryption key.
func (crypt *PdfCrypt) alg2(pass []byte) []byte {
common.Log.Trace("alg2")
key := crypt.paddedPass(pass)
h := md5.New()
h.Write(key)
// Pass O.
h.Write(crypt.encryptStd.O)
// Pass P (Lower order byte first).
var p = uint32(crypt.encryptStd.P)
var pb []byte
for i := 0; i < 4; i++ {
pb = append(pb, byte(((p >> uint(8*i)) & 0xff)))
}
h.Write(pb)
common.Log.Trace("go P: % x", pb)
// Pass ID[0] from the trailer
h.Write([]byte(crypt.id0))
common.Log.Trace("this.R = %d encryptMetadata %v", crypt.encryptStd.R, crypt.encryptStd.EncryptMetadata)
if (crypt.encryptStd.R >= 4) && !crypt.encryptStd.EncryptMetadata {
h.Write([]byte{0xff, 0xff, 0xff, 0xff})
}
hashb := h.Sum(nil)
if crypt.encryptStd.R >= 3 {
for i := 0; i < 50; i++ {
h = md5.New()
h.Write(hashb[0 : crypt.encrypt.Length/8])
hashb = h.Sum(nil)
}
}
if crypt.encryptStd.R >= 3 {
return hashb[0 : crypt.encrypt.Length/8]
}
return hashb[0:5]
}
// Create the RC4 encryption key.
func (crypt *PdfCrypt) alg3Key(pass []byte) []byte {
h := md5.New()
okey := crypt.paddedPass(pass)
h.Write(okey)
if crypt.encryptStd.R >= 3 {
for i := 0; i < 50; i++ {
hashb := h.Sum(nil)
h = md5.New()
h.Write(hashb)
}
}
encKey := h.Sum(nil)
if crypt.encryptStd.R == 2 {
encKey = encKey[0:5]
} else {
encKey = encKey[0 : crypt.encrypt.Length/8]
}
return encKey
}
// alg3 computes the encryption dictionarys O (owner password) value.
func (crypt *PdfCrypt) alg3(upass, opass []byte) (string, error) {
// Return O string val.
O := ""
var encKey []byte
if len(opass) > 0 {
encKey = crypt.alg3Key(opass)
} else {
encKey = crypt.alg3Key(upass)
}
ociph, err := rc4.NewCipher(encKey)
if err != nil {
return O, errors.New("Failed rc4 ciph")
}
ukey := crypt.paddedPass(upass)
encrypted := make([]byte, len(ukey))
ociph.XORKeyStream(encrypted, ukey)
if crypt.encryptStd.R >= 3 {
encKey2 := make([]byte, len(encKey))
for i := 0; i < 19; i++ {
for j := 0; j < len(encKey); j++ {
encKey2[j] = encKey[j] ^ byte(i+1)
}
ciph, err := rc4.NewCipher(encKey2)
if err != nil {
return O, errors.New("Failed rc4 ciph")
}
ciph.XORKeyStream(encrypted, encrypted)
}
}
O = string(encrypted)
return O, nil
}
// alg4 computes the encryption dictionarys U (user password) value (Security handlers of revision 2).
func (crypt *PdfCrypt) alg4(upass []byte) (string, []byte, error) {
U := ""
ekey := crypt.alg2(upass)
ciph, err := rc4.NewCipher(ekey)
if err != nil {
return U, ekey, errors.New("Failed rc4 ciph")
}
s := []byte(padding)
encrypted := make([]byte, len(s))
ciph.XORKeyStream(encrypted, s)
U = string(encrypted)
return U, ekey, nil
}
// alg5 computes the encryption dictionarys U (user password) value (Security handlers of revision 3 or greater).
func (crypt *PdfCrypt) alg5(upass []byte) (string, []byte, error) {
U := ""
ekey := crypt.alg2(upass)
h := md5.New()
h.Write([]byte(padding))
h.Write([]byte(crypt.id0))
hash := h.Sum(nil)
common.Log.Trace("alg5")
common.Log.Trace("ekey: % x", ekey)
common.Log.Trace("ID: % x", crypt.id0)
if len(hash) != 16 {
return U, ekey, errors.New("Hash length not 16 bytes")
}
ciph, err := rc4.NewCipher(ekey)
if err != nil {
return U, ekey, errors.New("Failed rc4 ciph")
}
encrypted := make([]byte, 16)
ciph.XORKeyStream(encrypted, hash)
// Do the following 19 times: Take the output from the previous
// invocation of the RC4 function and pass it as input to a new
// invocation of the function; use an encryption key generated by
// taking each byte of the original encryption key obtained in step
// (a) and performing an XOR (exclusive or) operation between that
// byte and the single-byte value of the iteration counter (from 1 to 19).
ekey2 := make([]byte, len(ekey))
for i := 0; i < 19; i++ {
for j := 0; j < len(ekey); j++ {
ekey2[j] = ekey[j] ^ byte(i+1)
}
ciph, err = rc4.NewCipher(ekey2)
if err != nil {
return U, ekey, errors.New("Failed rc4 ciph")
}
ciph.XORKeyStream(encrypted, encrypted)
common.Log.Trace("i = %d, ekey: % x", i, ekey2)
common.Log.Trace("i = %d -> % x", i, encrypted)
}
bb := make([]byte, 32)
for i := 0; i < 16; i++ {
bb[i] = encrypted[i]
}
// Append 16 bytes of arbitrary padding to the output from the final
// invocation of the RC4 function and store the 32-byte result as
// the value of the U entry in the encryption dictionary.
_, err = rand.Read(bb[16:32])
if err != nil {
return U, ekey, errors.New("Failed to gen rand number")
}
U = string(bb)
return U, ekey, nil
}
// alg6 authenticates the user password.
func (crypt *PdfCrypt) alg6(upass []byte) (bool, error) {
var uo string
var err error
var key []byte
if crypt.encryptStd.R == 2 {
uo, key, err = crypt.alg4(upass)
} else if crypt.encryptStd.R >= 3 {
uo, key, err = crypt.alg5(upass)
} else {
return false, errors.New("invalid R")
}
if err != nil {
return false, err
}
common.Log.Trace("check: % x == % x ?", string(uo), string(crypt.encryptStd.U))
uGen := string(uo) // Generated U from specified pass.
uDoc := string(crypt.encryptStd.U) // U from the document.
if crypt.encryptStd.R >= 3 {
// comparing on the first 16 bytes in the case of security
// handlers of revision 3 or greater),
if len(uGen) > 16 {
uGen = uGen[0:16]
}
if len(uDoc) > 16 {
uDoc = uDoc[0:16]
}
}
if uGen == uDoc {
crypt.encryptionKey = key
return true, nil
}
return false, nil
}
// alg7 authenticates the owner password.
func (crypt *PdfCrypt) alg7(opass []byte) (bool, error) {
encKey := crypt.alg3Key(opass)
decrypted := make([]byte, len(crypt.encryptStd.O))
if crypt.encryptStd.R == 2 {
ciph, err := rc4.NewCipher(encKey)
if err != nil {
return false, errors.New("Failed cipher")
}
ciph.XORKeyStream(decrypted, crypt.encryptStd.O)
} else if crypt.encryptStd.R >= 3 {
s := append([]byte{}, crypt.encryptStd.O...)
for i := 0; i < 20; i++ {
//newKey := encKey
newKey := append([]byte{}, encKey...)
for j := 0; j < len(encKey); j++ {
newKey[j] ^= byte(19 - i)
}
ciph, err := rc4.NewCipher(newKey)
if err != nil {
return false, errors.New("Failed cipher")
}
ciph.XORKeyStream(decrypted, s)
s = append([]byte{}, decrypted...)
}
} else {
return false, errors.New("invalid R")
}
auth, err := crypt.alg6(decrypted)
if err != nil {
return false, nil
}
return auth, nil
}
// generateParams generates encryption parameters for specified passwords.
func (crypt *PdfCrypt) generateParams(upass, opass []byte) error {
if crypt.encryptStd.R < 5 {
// Make the O and U objects.
O, err := crypt.alg3(upass, opass)
if err != nil {
common.Log.Debug("ERROR: Error generating O for encryption (%s)", err)
return err
}
crypt.encryptStd.O = []byte(O)
common.Log.Trace("gen O: % x", O)
U, key, err := crypt.alg5(upass)
if err != nil {
common.Log.Debug("ERROR: Error generating O for encryption (%s)", err)
return err
}
common.Log.Trace("gen U: % x", U)
crypt.encryptStd.U = []byte(U)
crypt.encryptionKey = key
return nil
}
crypt.encryptionKey = make([]byte, 32)
if _, err := io.ReadFull(rand.Reader, crypt.encryptionKey); err != nil {
return err
}
return crypt.generateR6(upass, opass)
}
// generateR6 is the algorithm opposite to alg2a (R>=5).
// It generates U,O,UE,OE,Perms fields using AESv3 encryption.
// There is no algorithm number assigned to this function in the spec.
func (crypt *PdfCrypt) generateR6(upass, opass []byte) error {
// all these field will be populated by functions below
crypt.encryptStd.U = nil
crypt.encryptStd.O = nil
crypt.encryptStd.UE = nil
crypt.encryptStd.OE = nil
crypt.encryptStd.Perms = nil // populated only for R=6
if len(upass) > 127 {
upass = upass[:127]
}
if len(opass) > 127 {
opass = opass[:127]
}
// generate U and UE
if err := crypt.alg8(upass); err != nil {
return err
}
// generate O and OE
if err := crypt.alg9(opass); err != nil {
return err
}
if crypt.encryptStd.R == 5 {
return nil
}
// generate Perms
return crypt.alg10()
}
// alg8 computes the encryption dictionary's U (user password) and UE (user encryption) values (R>=5).
// 7.6.4.4.6 Algorithm 8 (page 86)
func (crypt *PdfCrypt) alg8(upass []byte) error {
// step a: compute U (user password)
var rbuf [16]byte
if _, err := io.ReadFull(rand.Reader, rbuf[:]); err != nil {
return err
}
valSalt := rbuf[0:8]
keySalt := rbuf[8:16]
str := make([]byte, len(upass)+len(valSalt))
i := copy(str, upass)
i += copy(str[i:], valSalt)
h := crypt.alg2b(str, upass, nil)
U := make([]byte, len(h)+len(valSalt)+len(keySalt))
i = copy(U, h[:32])
i += copy(U[i:], valSalt)
i += copy(U[i:], keySalt)
crypt.encryptStd.U = U
// step b: compute UE (user encryption)
// str still contains a password, reuse it
i = len(upass)
i += copy(str[i:], keySalt)
h = crypt.alg2b(str, upass, nil)
ac, err := aes.NewCipher(h[:32])
h := crypt.securityHandler()
ekey, err := h.GenerateParams(&crypt.encryptStd, opass, upass)
if err != nil {
panic(err)
return err
}
iv := crypt.aesZeroIV()
cbc := cipher.NewCBCEncrypter(ac, iv)
UE := make([]byte, 32)
cbc.CryptBlocks(UE, crypt.encryptionKey[:32])
crypt.encryptStd.UE = UE
crypt.encryptionKey = ekey
return nil
}
// alg9 computes the encryption dictionary's O (owner password) and OE (owner encryption) values (R>=5).
// 7.6.4.4.7 Algorithm 9 (page 86)
func (crypt *PdfCrypt) alg9(opass []byte) error {
// step a: compute O (owner password)
var rbuf [16]byte
if _, err := io.ReadFull(rand.Reader, rbuf[:]); err != nil {
return err
}
valSalt := rbuf[0:8]
keySalt := rbuf[8:16]
userKey := crypt.encryptStd.U[:48]
str := make([]byte, len(opass)+len(valSalt)+len(userKey))
i := copy(str, opass)
i += copy(str[i:], valSalt)
i += copy(str[i:], userKey)
h := crypt.alg2b(str, opass, userKey)
O := make([]byte, len(h)+len(valSalt)+len(keySalt))
i = copy(O, h[:32])
i += copy(O[i:], valSalt)
i += copy(O[i:], keySalt)
crypt.encryptStd.O = O
// step b: compute OE (owner encryption)
// str still contains a password and a user key - reuse both, but overwrite the salt
i = len(opass)
i += copy(str[i:], keySalt)
// i += len(userKey)
h = crypt.alg2b(str, opass, userKey)
ac, err := aes.NewCipher(h[:32])
if err != nil {
panic(err)
}
iv := crypt.aesZeroIV()
cbc := cipher.NewCBCEncrypter(ac, iv)
OE := make([]byte, 32)
cbc.CryptBlocks(OE, crypt.encryptionKey[:32])
crypt.encryptStd.OE = OE
return nil
}
// alg10 computes the encryption dictionary's Perms (permissions) value (R=6).
// 7.6.4.4.8 Algorithm 10 (page 87)
func (crypt *PdfCrypt) alg10() error {
// step a: extend permissions to 64 bits
perms := uint64(uint32(crypt.encryptStd.P)) | (math.MaxUint32 << 32)
// step b: record permissions
Perms := make([]byte, 16)
binary.LittleEndian.PutUint64(Perms[:8], perms)
// step c: record EncryptMetadata
if crypt.encryptStd.EncryptMetadata {
Perms[8] = 'T'
} else {
Perms[8] = 'F'
}
// step d: write "adb" magic
copy(Perms[9:12], "adb")
// step e: write 4 bytes of random data
// spec doesn't specify them as generated "from a strong random source",
// but we will use the cryptographic random generator anyway
if _, err := io.ReadFull(rand.Reader, Perms[12:16]); err != nil {
return err
}
// step f: encrypt permissions
ac, err := aes.NewCipher(crypt.encryptionKey[:32])
if err != nil {
panic(err)
}
ecb := newECBEncrypter(ac)
ecb.CryptBlocks(Perms, Perms)
crypt.encryptStd.Perms = Perms[:16]
return nil
}
// alg11 authenticates the user password (R >= 5) and returns the hash.
func (crypt *PdfCrypt) alg11(upass []byte) ([]byte, error) {
str := make([]byte, len(upass)+8)
i := copy(str, upass)
i += copy(str[i:], crypt.encryptStd.U[32:40]) // user Validation Salt
h := crypt.alg2b(str, upass, nil)
h = h[:32]
if !bytes.Equal(h, crypt.encryptStd.U[:32]) {
return nil, nil
}
return h, nil
}
// alg12 authenticates the owner password (R >= 5) and returns the hash.
// 7.6.4.4.10 Algorithm 12 (page 87)
func (crypt *PdfCrypt) alg12(opass []byte) ([]byte, error) {
str := make([]byte, len(opass)+8+48)
i := copy(str, opass)
i += copy(str[i:], crypt.encryptStd.O[32:40]) // owner Validation Salt
i += copy(str[i:], crypt.encryptStd.U[0:48])
h := crypt.alg2b(str, opass, crypt.encryptStd.U[0:48])
h = h[:32]
if !bytes.Equal(h, crypt.encryptStd.O[:32]) {
return nil, nil
}
return h, nil
}
// alg13 validates user permissions (P+EncryptMetadata vs Perms) for R=6.
// 7.6.4.4.11 Algorithm 13 (page 87)
func (crypt *PdfCrypt) alg13(fkey []byte) (bool, error) {
perms := make([]byte, 16)
copy(perms, crypt.encryptStd.Perms[:16])
ac, err := aes.NewCipher(fkey[:32])
if err != nil {
panic(err)
}
ecb := newECBDecrypter(ac)
ecb.CryptBlocks(perms, perms)
if !bytes.Equal(perms[9:12], []byte("adb")) {
return false, errors.New("decoded permissions are invalid")
}
p := AccessPermissions(binary.LittleEndian.Uint32(perms[0:4]))
if p != crypt.encryptStd.P {
return false, errors.New("permissions validation failed")
}
encMeta := true
if perms[8] == 'T' {
encMeta = true
} else if perms[8] == 'F' {
encMeta = false
} else {
return false, errors.New("decoded metadata encryption flag is invalid")
}
if encMeta != crypt.encryptStd.EncryptMetadata {
return false, errors.New("metadata encryption validation failed")
}
return true, nil
}

View File

@ -0,0 +1,17 @@
/*
* This file is subject to the terms and conditions defined in
* file 'LICENSE.md', which is part of this source code package.
*/
package core
type stdSecurityHandler interface {
// GenerateParams uses owner and user passwords to set encryption parameters and generate an encryption key.
// It assumes that R, P and EncryptMetadata are already set.
GenerateParams(d *stdEncryptDict, ownerPass, userPass []byte) ([]byte, error)
// Authenticate uses encryption dictionary parameters and the password to calculate
// the document encryption key. It also returns permissions that should be granted to a user.
// In case of failed authentication, it returns empty key and zero permissions with no error.
Authenticate(d *stdEncryptDict, pass []byte) ([]byte, AccessPermissions, error)
}

View File

@ -0,0 +1,340 @@
/*
* This file is subject to the terms and conditions defined in
* file 'LICENSE.md', which is part of this source code package.
*/
package core
import (
"bytes"
"crypto/md5"
"crypto/rand"
"crypto/rc4"
"errors"
"github.com/unidoc/unidoc/common"
)
var _ stdSecurityHandler = stdHandlerR4{}
type stdHandlerR4 struct {
Length int
ID0 string
}
func (sh stdHandlerR4) paddedPass(pass []byte) []byte {
key := make([]byte, 32)
if len(pass) >= 32 {
for i := 0; i < 32; i++ {
key[i] = pass[i]
}
} else {
for i := 0; i < len(pass); i++ {
key[i] = pass[i]
}
for i := len(pass); i < 32; i++ {
key[i] = padding[i-len(pass)]
}
}
return key
}
// alg2 computes an encryption key.
func (sh stdHandlerR4) alg2(d *stdEncryptDict, pass []byte) []byte {
common.Log.Trace("alg2")
key := sh.paddedPass(pass)
h := md5.New()
h.Write(key)
// Pass O.
h.Write(d.O)
// Pass P (Lower order byte first).
var p = uint32(d.P)
var pb []byte
for i := 0; i < 4; i++ {
pb = append(pb, byte(((p >> uint(8*i)) & 0xff)))
}
h.Write(pb)
common.Log.Trace("go P: % x", pb)
// Pass ID[0] from the trailer
h.Write([]byte(sh.ID0))
common.Log.Trace("this.R = %d encryptMetadata %v", d.R, d.EncryptMetadata)
if (d.R >= 4) && !d.EncryptMetadata {
h.Write([]byte{0xff, 0xff, 0xff, 0xff})
}
hashb := h.Sum(nil)
if d.R >= 3 {
for i := 0; i < 50; i++ {
h = md5.New()
h.Write(hashb[0 : sh.Length/8])
hashb = h.Sum(nil)
}
}
if d.R >= 3 {
return hashb[0 : sh.Length/8]
}
return hashb[0:5]
}
// Create the RC4 encryption key.
func (sh stdHandlerR4) alg3Key(R int, pass []byte) []byte {
h := md5.New()
okey := sh.paddedPass(pass)
h.Write(okey)
if R >= 3 {
for i := 0; i < 50; i++ {
hashb := h.Sum(nil)
h = md5.New()
h.Write(hashb)
}
}
encKey := h.Sum(nil)
if R == 2 {
encKey = encKey[0:5]
} else {
encKey = encKey[0 : sh.Length/8]
}
return encKey
}
// alg3 computes the encryption dictionarys O (owner password) value.
func (sh stdHandlerR4) alg3(R int, upass, opass []byte) ([]byte, error) {
var encKey []byte
if len(opass) > 0 {
encKey = sh.alg3Key(R, opass)
} else {
encKey = sh.alg3Key(R, upass)
}
ociph, err := rc4.NewCipher(encKey)
if err != nil {
return nil, errors.New("Failed rc4 ciph")
}
ukey := sh.paddedPass(upass)
encrypted := make([]byte, len(ukey))
ociph.XORKeyStream(encrypted, ukey)
if R >= 3 {
encKey2 := make([]byte, len(encKey))
for i := 0; i < 19; i++ {
for j := 0; j < len(encKey); j++ {
encKey2[j] = encKey[j] ^ byte(i+1)
}
ciph, err := rc4.NewCipher(encKey2)
if err != nil {
return nil, errors.New("Failed rc4 ciph")
}
ciph.XORKeyStream(encrypted, encrypted)
}
}
return encrypted, nil
}
// alg4 computes the encryption dictionarys U (user password) value (Security handlers of revision 2).
func (sh stdHandlerR4) alg4(ekey []byte, upass []byte) ([]byte, error) {
ciph, err := rc4.NewCipher(ekey)
if err != nil {
return nil, errors.New("Failed rc4 ciph")
}
s := []byte(padding)
encrypted := make([]byte, len(s))
ciph.XORKeyStream(encrypted, s)
return encrypted, nil
}
// alg5 computes the encryption dictionarys U (user password) value (Security handlers of revision 3 or greater).
func (sh stdHandlerR4) alg5(ekey []byte, upass []byte) ([]byte, error) {
h := md5.New()
h.Write([]byte(padding))
h.Write([]byte(sh.ID0))
hash := h.Sum(nil)
common.Log.Trace("alg5")
common.Log.Trace("ekey: % x", ekey)
common.Log.Trace("ID: % x", sh.ID0)
if len(hash) != 16 {
return nil, errors.New("Hash length not 16 bytes")
}
ciph, err := rc4.NewCipher(ekey)
if err != nil {
return nil, errors.New("Failed rc4 ciph")
}
encrypted := make([]byte, 16)
ciph.XORKeyStream(encrypted, hash)
// Do the following 19 times: Take the output from the previous
// invocation of the RC4 function and pass it as input to a new
// invocation of the function; use an encryption key generated by
// taking each byte of the original encryption key obtained in step
// (a) and performing an XOR (exclusive or) operation between that
// byte and the single-byte value of the iteration counter (from 1 to 19).
ekey2 := make([]byte, len(ekey))
for i := 0; i < 19; i++ {
for j := 0; j < len(ekey); j++ {
ekey2[j] = ekey[j] ^ byte(i+1)
}
ciph, err = rc4.NewCipher(ekey2)
if err != nil {
return nil, errors.New("Failed rc4 ciph")
}
ciph.XORKeyStream(encrypted, encrypted)
common.Log.Trace("i = %d, ekey: % x", i, ekey2)
common.Log.Trace("i = %d -> % x", i, encrypted)
}
bb := make([]byte, 32)
for i := 0; i < 16; i++ {
bb[i] = encrypted[i]
}
// Append 16 bytes of arbitrary padding to the output from the final
// invocation of the RC4 function and store the 32-byte result as
// the value of the U entry in the encryption dictionary.
_, err = rand.Read(bb[16:32])
if err != nil {
return nil, errors.New("Failed to gen rand number")
}
return bb, nil
}
// alg6 authenticates the user password and returns the document encryption key.
// It returns an nil key in case authentication failed.
func (sh stdHandlerR4) alg6(d *stdEncryptDict, upass []byte) ([]byte, error) {
var (
uo []byte
err error
)
ekey := sh.alg2(d, upass)
if d.R == 2 {
uo, err = sh.alg4(ekey, upass)
} else if d.R >= 3 {
uo, err = sh.alg5(ekey, upass)
} else {
return nil, errors.New("invalid R")
}
if err != nil {
return nil, err
}
common.Log.Trace("check: % x == % x ?", string(uo), string(d.U))
uGen := uo // Generated U from specified pass.
uDoc := d.U // U from the document.
if d.R >= 3 {
// comparing on the first 16 bytes in the case of security
// handlers of revision 3 or greater),
if len(uGen) > 16 {
uGen = uGen[0:16]
}
if len(uDoc) > 16 {
uDoc = uDoc[0:16]
}
}
if !bytes.Equal(uGen, uDoc) {
return nil, nil
}
return ekey, nil
}
// alg7 authenticates the owner password and returns the document encryption key.
//// It returns an nil key in case authentication failed.
func (sh stdHandlerR4) alg7(d *stdEncryptDict, opass []byte) ([]byte, error) {
encKey := sh.alg3Key(d.R, opass)
decrypted := make([]byte, len(d.O))
if d.R == 2 {
ciph, err := rc4.NewCipher(encKey)
if err != nil {
return nil, errors.New("Failed cipher")
}
ciph.XORKeyStream(decrypted, d.O)
} else if d.R >= 3 {
s := append([]byte{}, d.O...)
for i := 0; i < 20; i++ {
//newKey := encKey
newKey := append([]byte{}, encKey...)
for j := 0; j < len(encKey); j++ {
newKey[j] ^= byte(19 - i)
}
ciph, err := rc4.NewCipher(newKey)
if err != nil {
return nil, errors.New("Failed cipher")
}
ciph.XORKeyStream(decrypted, s)
s = append([]byte{}, decrypted...)
}
} else {
return nil, errors.New("invalid R")
}
ekey, err := sh.alg6(d, decrypted)
if err != nil {
// TODO(dennwc): this doesn't look right, but it was in the old code
return nil, nil
}
return ekey, nil
}
func (sh stdHandlerR4) GenerateParams(d *stdEncryptDict, opass, upass []byte) ([]byte, error) {
// Make the O and U objects.
O, err := sh.alg3(d.R, upass, opass)
if err != nil {
common.Log.Debug("ERROR: Error generating O for encryption (%s)", err)
return nil, err
}
d.O = O
common.Log.Trace("gen O: % x", O)
// requires O
ekey := sh.alg2(d, upass)
U, err := sh.alg5(ekey, upass)
if err != nil {
common.Log.Debug("ERROR: Error generating O for encryption (%s)", err)
return nil, err
}
d.U = U
common.Log.Trace("gen U: % x", U)
return ekey, nil
}
func (sh stdHandlerR4) Authenticate(d *stdEncryptDict, pass []byte) ([]byte, AccessPermissions, error) {
// Try owner password.
// May not be necessary if only want to get all contents.
// (user pass needs to be known or empty).
common.Log.Trace("Debugging authentication - owner pass")
ekey, err := sh.alg7(d, pass)
if err != nil {
return nil, 0, err
}
if ekey != nil {
common.Log.Trace("this.authenticated = True")
return ekey, PermOwner, nil
}
// Try user password.
common.Log.Trace("Debugging authentication - user pass")
ekey, err = sh.alg6(d, pass)
if err != nil {
return nil, 0, err
}
if ekey != nil {
common.Log.Trace("this.authenticated = True")
return ekey, d.P, nil
}
// Cannot even view the file.
return nil, 0, nil
}

View File

@ -0,0 +1,139 @@
/*
* This file is subject to the terms and conditions defined in
* file 'LICENSE.md', which is part of this source code package.
*/
package core
import (
"github.com/unidoc/unidoc/common"
"testing"
)
func init() {
common.SetLogger(common.ConsoleLogger{})
}
func TestR4Padding(t *testing.T) {
sh := stdHandlerR4{}
// Case 1 empty pass, should match padded string.
key := sh.paddedPass([]byte(""))
if len(key) != 32 {
t.Errorf("Fail, expected padded pass length = 32 (%d)", len(key))
}
if key[0] != 0x28 {
t.Errorf("key[0] != 0x28 (%q in %q)", key[0], key)
}
if key[31] != 0x7A {
t.Errorf("key[31] != 0x7A (%q in %q)", key[31], key)
}
// Case 2, non empty pass.
key = sh.paddedPass([]byte("bla"))
if len(key) != 32 {
t.Errorf("Fail, expected padded pass length = 32 (%d)", len(key))
}
if string(key[0:3]) != "bla" {
t.Errorf("Expecting start with bla (%s)", key)
}
if key[3] != 0x28 {
t.Errorf("key[3] != 0x28 (%q in %q)", key[3], key)
}
if key[31] != 0x64 {
t.Errorf("key[31] != 0x64 (%q in %q)", key[31], key)
}
}
// Test algorithm 2.
func TestAlg2(t *testing.T) {
sh := stdHandlerR4{
// V: 2,
ID0: string([]byte{0x4e, 0x00, 0x99, 0xe5, 0x36, 0x78, 0x93, 0x24,
0xff, 0xd5, 0x82, 0xe4, 0xec, 0x0e, 0xa3, 0xb4}),
Length: 128,
}
d := &stdEncryptDict{
R: 3,
P: 0xfffff0c0,
EncryptMetadata: true,
O: []byte{0xE6, 0x00, 0xEC, 0xC2, 0x02, 0x88, 0xAD, 0x8B,
0x5C, 0x72, 0x64, 0xA9, 0x5C, 0x29, 0xC6, 0xA8, 0x3E, 0xE2, 0x51,
0x76, 0x79, 0xAA, 0x02, 0x18, 0xBE, 0xCE, 0xEA, 0x8B, 0x79, 0x86,
0x72, 0x6A, 0x8C, 0xDB},
}
key := sh.alg2(d, []byte(""))
keyExp := []byte{0xf8, 0x94, 0x9c, 0x5a, 0xf5, 0xa0, 0xc0, 0xca,
0x30, 0xb8, 0x91, 0xc1, 0xbb, 0x2c, 0x4f, 0xf5}
if string(key) != string(keyExp) {
common.Log.Debug(" Key (%d): % x", len(key), key)
common.Log.Debug("KeyExp (%d): % x", len(keyExp), keyExp)
t.Errorf("alg2 -> key != expected\n")
}
}
// Test algorithm 3.
func TestAlg3(t *testing.T) {
sh := stdHandlerR4{
// V: 2,
ID0: string([]byte{0x4e, 0x00, 0x99, 0xe5, 0x36, 0x78, 0x93, 0x24,
0xff, 0xd5, 0x82, 0xe4, 0xec, 0x0e, 0xa3, 0xb4}),
Length: 128,
}
Oexp := []byte{0xE6, 0x00, 0xEC, 0xC2, 0x02, 0x88, 0xAD, 0x8B,
0x0d, 0x64, 0xA9, 0x29, 0xC6, 0xA8, 0x3E, 0xE2, 0x51,
0x76, 0x79, 0xAA, 0x02, 0x18, 0xBE, 0xCE, 0xEA, 0x8B, 0x79, 0x86,
0x72, 0x6A, 0x8C, 0xDB}
O, err := sh.alg3(3, []byte(""), []byte("test"))
if err != nil {
t.Errorf("crypt alg3 error %s", err)
return
}
if string(O) != string(Oexp) {
common.Log.Debug(" O (%d): % x", len(O), O)
common.Log.Debug("Oexp (%d): % x", len(Oexp), Oexp)
t.Errorf("alg3 -> key != expected")
}
}
// Test algorithm 5 for computing dictionary's U (user password) value
// valid for R >= 3.
func TestAlg5(t *testing.T) {
sh := stdHandlerR4{
// V: 2,
ID0: string([]byte{0x4e, 0x00, 0x99, 0xe5, 0x36, 0x78, 0x93, 0x24,
0xff, 0xd5, 0x82, 0xe4, 0xec, 0x0e, 0xa3, 0xb4}),
Length: 128,
}
d := &stdEncryptDict{
R: 3,
P: 0xfffff0c0,
EncryptMetadata: true,
O: []byte{0xE6, 0x00, 0xEC, 0xC2, 0x02, 0x88, 0xAD, 0x8B,
0x5C, 0x72, 0x64, 0xA9, 0x5C, 0x29, 0xC6, 0xA8, 0x3E, 0xE2, 0x51,
0x76, 0x79, 0xAA, 0x02, 0x18, 0xBE, 0xCE, 0xEA, 0x8B, 0x79, 0x86,
0x72, 0x6A, 0x8C, 0xDB},
}
ekey := sh.alg2(d, []byte(""))
U, err := sh.alg5(ekey, []byte(""))
if err != nil {
t.Errorf("Error %s", err)
return
}
Uexp := []byte{0x59, 0x66, 0x38, 0x6c, 0x76, 0xfe, 0x95, 0x7d, 0x3d,
0x0d, 0x14, 0x3d, 0x36, 0xfd, 0x01, 0x3d, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}
if string(U[0:16]) != string(Uexp[0:16]) {
common.Log.Info(" U (%d): % x", len(U), U)
common.Log.Info("Uexp (%d): % x", len(Uexp), Uexp)
t.Errorf("U != expected\n")
}
}

View File

@ -0,0 +1,460 @@
/*
* This file is subject to the terms and conditions defined in
* file 'LICENSE.md', which is part of this source code package.
*/
package core
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"crypto/sha256"
"crypto/sha512"
"encoding/binary"
"errors"
"hash"
"io"
"math"
)
var _ stdSecurityHandler = stdHandlerR6{}
type stdHandlerR6 struct{}
// alg2a retrieves the encryption key from an encrypted document (R >= 5).
// 7.6.4.3.2 Algorithm 2.A (page 83)
func (sh stdHandlerR6) alg2a(d *stdEncryptDict, pass []byte) ([]byte, AccessPermissions, error) {
// O & U: 32 byte hash + 8 byte Validation Salt + 8 byte Key Salt
// step a: Unicode normalization
// TODO(dennwc): make sure that UTF-8 strings are normalized
// step b: truncate to 127 bytes
if len(pass) > 127 {
pass = pass[:127]
}
// step c: test pass against the owner key
h, err := sh.alg12(d, pass)
if err != nil {
return nil, 0, err
}
var (
data []byte // data to hash
ekey []byte // encrypted file key
ukey []byte // user key; set only when using owner's password
)
var perm AccessPermissions
if len(h) != 0 {
// owner password valid
perm = PermOwner
// step d: compute an intermediate owner key
str := make([]byte, len(pass)+8+48)
i := copy(str, pass)
i += copy(str[i:], d.O[40:48]) // owner Key Salt
i += copy(str[i:], d.U[0:48])
data = str
ekey = d.OE
ukey = d.U[0:48]
} else {
// check user password
h, err = sh.alg11(d, pass)
if err == nil && len(h) == 0 {
// try default password
h, err = sh.alg11(d, []byte(""))
}
if err != nil {
return nil, 0, err
} else if len(h) == 0 {
// wrong password
return nil, 0, nil
}
perm = d.P
// step e: compute an intermediate user key
str := make([]byte, len(pass)+8)
i := copy(str, pass)
i += copy(str[i:], d.U[40:48]) // user Key Salt
data = str
ekey = d.UE
ukey = nil
}
ekey = ekey[:32]
// intermediate key
ikey := sh.alg2b(d.R, data, pass, ukey)
ac, err := aes.NewCipher(ikey[:32])
if err != nil {
return nil, 0, err
}
iv := make([]byte, aes.BlockSize)
cbc := cipher.NewCBCDecrypter(ac, iv)
fkey := make([]byte, 32)
cbc.CryptBlocks(fkey, ekey)
if d.R == 5 {
return fkey, perm, nil
}
// validate permissions
err = sh.alg13(d, fkey)
if err != nil {
return nil, 0, err
}
return fkey, perm, nil
}
// alg2b_R5 computes a hash for R=5, used in a deprecated extension.
// It's used the same way as a hash described in Algorithm 2.B, but it doesn't use the original password
// and the user key to calculate the hash.
func alg2b_R5(data []byte) []byte {
h := sha256.New()
h.Write(data)
return h.Sum(nil)
}
// repeat repeats first n bytes of buf until the end of the buffer.
// It assumes that the length of buf is a multiple of n.
func repeat(buf []byte, n int) {
bp := n
for bp < len(buf) {
copy(buf[bp:], buf[:bp])
bp *= 2
}
}
// alg2b computes a hash for R=6.
// 7.6.4.3.3 Algorithm 2.B (page 83)
func alg2b(data, pwd, userKey []byte) []byte {
var (
s256, s384, s512 hash.Hash
)
s256 = sha256.New()
hbuf := make([]byte, 64)
h := s256
h.Write(data)
K := h.Sum(hbuf[:0])
buf := make([]byte, 64*(127+64+48))
round := func(rnd int) (E []byte) {
// step a: repeat pass+K 64 times
n := len(pwd) + len(K) + len(userKey)
part := buf[:n]
i := copy(part, pwd)
i += copy(part[i:], K[:])
i += copy(part[i:], userKey)
if i != n {
panic("wrong size")
}
K1 := buf[:n*64]
repeat(K1, n)
// step b: encrypt K1 with AES-128 CBC
ac, err := aes.NewCipher(K[0:16])
if err != nil {
panic(err)
}
cbc := cipher.NewCBCEncrypter(ac, K[16:32])
cbc.CryptBlocks(K1, K1)
E = K1
// step c: use 16 bytes of E as big-endian int, select the next hash
b := 0
for i := 0; i < 16; i++ {
b += int(E[i] % 3)
}
var h hash.Hash
switch b % 3 {
case 0:
h = s256
case 1:
if s384 == nil {
s384 = sha512.New384()
}
h = s384
case 2:
if s512 == nil {
s512 = sha512.New()
}
h = s512
}
// step d: take the hash of E, use as a new K
h.Reset()
h.Write(E)
K = h.Sum(hbuf[:0])
return E
}
for i := 0; ; {
E := round(i)
b := uint8(E[len(E)-1])
// from the spec, it appears that i should be incremented after
// the test, but that doesn't match what Adobe does
i++
if i >= 64 && b <= uint8(i-32) {
break
}
}
return K[:32]
}
// alg2b computes a hash for R=5 and R=6.
func (sh stdHandlerR6) alg2b(R int, data, pwd, userKey []byte) []byte {
if R == 5 {
return alg2b_R5(data)
}
return alg2b(data, pwd, userKey)
}
// alg8 computes the encryption dictionary's U (user password) and UE (user encryption) values (R>=5).
// 7.6.4.4.6 Algorithm 8 (page 86)
func (sh stdHandlerR6) alg8(d *stdEncryptDict, ekey []byte, upass []byte) error {
// step a: compute U (user password)
var rbuf [16]byte
if _, err := io.ReadFull(rand.Reader, rbuf[:]); err != nil {
return err
}
valSalt := rbuf[0:8]
keySalt := rbuf[8:16]
str := make([]byte, len(upass)+len(valSalt))
i := copy(str, upass)
i += copy(str[i:], valSalt)
h := sh.alg2b(d.R, str, upass, nil)
U := make([]byte, len(h)+len(valSalt)+len(keySalt))
i = copy(U, h[:32])
i += copy(U[i:], valSalt)
i += copy(U[i:], keySalt)
d.U = U
// step b: compute UE (user encryption)
// str still contains a password, reuse it
i = len(upass)
i += copy(str[i:], keySalt)
h = sh.alg2b(d.R, str, upass, nil)
ac, err := aes.NewCipher(h[:32])
if err != nil {
panic(err)
}
iv := make([]byte, aes.BlockSize)
cbc := cipher.NewCBCEncrypter(ac, iv)
UE := make([]byte, 32)
cbc.CryptBlocks(UE, ekey[:32])
d.UE = UE
return nil
}
// alg9 computes the encryption dictionary's O (owner password) and OE (owner encryption) values (R>=5).
// 7.6.4.4.7 Algorithm 9 (page 86)
func (sh stdHandlerR6) alg9(d *stdEncryptDict, ekey []byte, opass []byte) error {
// step a: compute O (owner password)
var rbuf [16]byte
if _, err := io.ReadFull(rand.Reader, rbuf[:]); err != nil {
return err
}
valSalt := rbuf[0:8]
keySalt := rbuf[8:16]
userKey := d.U[:48]
str := make([]byte, len(opass)+len(valSalt)+len(userKey))
i := copy(str, opass)
i += copy(str[i:], valSalt)
i += copy(str[i:], userKey)
h := sh.alg2b(d.R, str, opass, userKey)
O := make([]byte, len(h)+len(valSalt)+len(keySalt))
i = copy(O, h[:32])
i += copy(O[i:], valSalt)
i += copy(O[i:], keySalt)
d.O = O
// step b: compute OE (owner encryption)
// str still contains a password and a user key - reuse both, but overwrite the salt
i = len(opass)
i += copy(str[i:], keySalt)
// i += len(userKey)
h = sh.alg2b(d.R, str, opass, userKey)
ac, err := aes.NewCipher(h[:32])
if err != nil {
panic(err)
}
iv := make([]byte, aes.BlockSize)
cbc := cipher.NewCBCEncrypter(ac, iv)
OE := make([]byte, 32)
cbc.CryptBlocks(OE, ekey[:32])
d.OE = OE
return nil
}
// alg10 computes the encryption dictionary's Perms (permissions) value (R=6).
// 7.6.4.4.8 Algorithm 10 (page 87)
func (sh stdHandlerR6) alg10(d *stdEncryptDict, ekey []byte) error {
// step a: extend permissions to 64 bits
perms := uint64(uint32(d.P)) | (math.MaxUint32 << 32)
// step b: record permissions
Perms := make([]byte, 16)
binary.LittleEndian.PutUint64(Perms[:8], perms)
// step c: record EncryptMetadata
if d.EncryptMetadata {
Perms[8] = 'T'
} else {
Perms[8] = 'F'
}
// step d: write "adb" magic
copy(Perms[9:12], "adb")
// step e: write 4 bytes of random data
// spec doesn't specify them as generated "from a strong random source",
// but we will use the cryptographic random generator anyway
if _, err := io.ReadFull(rand.Reader, Perms[12:16]); err != nil {
return err
}
// step f: encrypt permissions
ac, err := aes.NewCipher(ekey[:32])
if err != nil {
panic(err)
}
ecb := newECBEncrypter(ac)
ecb.CryptBlocks(Perms, Perms)
d.Perms = Perms[:16]
return nil
}
// alg11 authenticates the user password (R >= 5) and returns the hash.
func (sh stdHandlerR6) alg11(d *stdEncryptDict, upass []byte) ([]byte, error) {
str := make([]byte, len(upass)+8)
i := copy(str, upass)
i += copy(str[i:], d.U[32:40]) // user Validation Salt
h := sh.alg2b(d.R, str, upass, nil)
h = h[:32]
if !bytes.Equal(h, d.U[:32]) {
return nil, nil
}
return h, nil
}
// alg12 authenticates the owner password (R >= 5) and returns the hash.
// 7.6.4.4.10 Algorithm 12 (page 87)
func (sh stdHandlerR6) alg12(d *stdEncryptDict, opass []byte) ([]byte, error) {
str := make([]byte, len(opass)+8+48)
i := copy(str, opass)
i += copy(str[i:], d.O[32:40]) // owner Validation Salt
i += copy(str[i:], d.U[0:48])
h := sh.alg2b(d.R, str, opass, d.U[0:48])
h = h[:32]
if !bytes.Equal(h, d.O[:32]) {
return nil, nil
}
return h, nil
}
// alg13 validates user permissions (P+EncryptMetadata vs Perms) for R=6.
// 7.6.4.4.11 Algorithm 13 (page 87)
func (sh stdHandlerR6) alg13(d *stdEncryptDict, fkey []byte) error {
perms := make([]byte, 16)
copy(perms, d.Perms[:16])
ac, err := aes.NewCipher(fkey[:32])
if err != nil {
panic(err)
}
ecb := newECBDecrypter(ac)
ecb.CryptBlocks(perms, perms)
if !bytes.Equal(perms[9:12], []byte("adb")) {
return errors.New("decoded permissions are invalid")
}
p := AccessPermissions(binary.LittleEndian.Uint32(perms[0:4]))
if p != d.P {
return errors.New("permissions validation failed")
}
encMeta := true
if perms[8] == 'T' {
encMeta = true
} else if perms[8] == 'F' {
encMeta = false
} else {
return errors.New("decoded metadata encryption flag is invalid")
}
if encMeta != d.EncryptMetadata {
return errors.New("metadata encryption validation failed")
}
return nil
}
// generateR6 is the algorithm opposite to alg2a (R>=5).
// It generates U,O,UE,OE,Perms fields using AESv3 encryption.
// There is no algorithm number assigned to this function in the spec.
func (sh stdHandlerR6) GenerateParams(d *stdEncryptDict, opass, upass []byte) ([]byte, error) {
ekey := make([]byte, 32)
if _, err := io.ReadFull(rand.Reader, ekey); err != nil {
return nil, err
}
// all these field will be populated by functions below
d.U = nil
d.O = nil
d.UE = nil
d.OE = nil
d.Perms = nil // populated only for R=6
if len(upass) > 127 {
upass = upass[:127]
}
if len(opass) > 127 {
opass = opass[:127]
}
// generate U and UE
if err := sh.alg8(d, ekey, upass); err != nil {
return nil, err
}
// generate O and OE
if err := sh.alg9(d, ekey, opass); err != nil {
return nil, err
}
if d.R == 5 {
return ekey, nil
}
// generate Perms
if err := sh.alg10(d, ekey); err != nil {
return nil, err
}
return ekey, nil
}
func (sh stdHandlerR6) Authenticate(d *stdEncryptDict, pass []byte) ([]byte, AccessPermissions, error) {
return sh.alg2a(d, pass)
}

View File

@ -0,0 +1,111 @@
package core
import (
"bytes"
"fmt"
"math/rand"
"strings"
"testing"
)
func BenchmarkAlg2b(b *testing.B) {
// hash runs a variable number of rounds, so we need to have a
// deterministic random source to make benchmark results comparable
r := rand.New(rand.NewSource(1234567))
const n = 20
pass := make([]byte, n)
r.Read(pass)
data := make([]byte, n+8+48)
r.Read(data)
user := make([]byte, 48)
r.Read(user)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
_ = alg2b(data, pass, user)
}
}
func TestStdHandlerR6(t *testing.T) {
var cases = []struct {
Name string
EncMeta bool
UserPass string
OwnerPass string
}{
{
Name: "simple", EncMeta: true,
UserPass: "user", OwnerPass: "owner",
},
{
Name: "utf8", EncMeta: false,
UserPass: "æøå-u", OwnerPass: "æøå-o",
},
{
Name: "long", EncMeta: true,
UserPass: strings.Repeat("user", 80),
OwnerPass: strings.Repeat("owner", 80),
},
}
const (
perms = 0x12345678
)
for _, R := range []int{5, 6} {
R := R
t.Run(fmt.Sprintf("R=%d", R), func(t *testing.T) {
for _, c := range cases {
c := c
t.Run(c.Name, func(t *testing.T) {
sh := stdHandlerR6{} // V=5
d := &stdEncryptDict{
R: R, P: perms,
EncryptMetadata: c.EncMeta,
}
// generate encryption parameters
ekey, err := sh.GenerateParams(d, []byte(c.OwnerPass), []byte(c.UserPass))
if err != nil {
t.Fatal("Failed to encrypt:", err)
}
// Perms and EncryptMetadata are checked as a part of alg2a
// decrypt using user password
key, uperm, err := sh.alg2a(d, []byte(c.UserPass))
if err != nil || uperm != perms {
t.Error("Failed to authenticate user pass:", err)
} else if !bytes.Equal(ekey, key) {
t.Error("wrong encryption key")
}
// decrypt using owner password
key, uperm, err = sh.alg2a(d, []byte(c.OwnerPass))
if err != nil || uperm != PermOwner {
t.Error("Failed to authenticate owner pass:", err, uperm)
} else if !bytes.Equal(ekey, key) {
t.Error("wrong encryption key")
}
// try to elevate user permissions
d.P = PermOwner
key, uperm, err = sh.alg2a(d, []byte(c.UserPass))
if R == 5 {
// it's actually possible with R=5, since Perms is not generated
if err != nil || uperm != PermOwner {
t.Error("Failed to authenticate user pass:", err)
}
} else {
// not possible in R=6, should return an error
if err == nil || uperm == PermOwner {
t.Error("was able to elevate permissions with R=6")
}
}
})
}
})
}
}

View File

@ -8,13 +8,7 @@
package core
import (
"bytes"
"fmt"
"math"
"math/rand"
"strings"
"testing"
"time"
"github.com/unidoc/unidoc/common"
)
@ -23,141 +17,6 @@ func init() {
common.SetLogger(common.ConsoleLogger{})
}
func TestPadding(t *testing.T) {
crypter := PdfCrypt{}
// Case 1 empty pass, should match padded string.
key := crypter.paddedPass([]byte(""))
if len(key) != 32 {
t.Errorf("Fail, expected padded pass length = 32 (%d)", len(key))
}
if key[0] != 0x28 {
t.Errorf("key[0] != 0x28 (%q in %q)", key[0], key)
}
if key[31] != 0x7A {
t.Errorf("key[31] != 0x7A (%q in %q)", key[31], key)
}
// Case 2, non empty pass.
key = crypter.paddedPass([]byte("bla"))
if len(key) != 32 {
t.Errorf("Fail, expected padded pass length = 32 (%d)", len(key))
}
if string(key[0:3]) != "bla" {
t.Errorf("Expecting start with bla (%s)", key)
}
if key[3] != 0x28 {
t.Errorf("key[3] != 0x28 (%q in %q)", key[3], key)
}
if key[31] != 0x64 {
t.Errorf("key[31] != 0x64 (%q in %q)", key[31], key)
}
}
// Test algorithm 2.
func TestAlg2(t *testing.T) {
crypter := PdfCrypt{
encrypt: encryptDict{
V: 2,
Length: 128,
},
encryptStd: stdEncryptDict{
R: 3,
P: 0xfffff0c0,
EncryptMetadata: true,
O: []byte{0xE6, 0x00, 0xEC, 0xC2, 0x02, 0x88, 0xAD, 0x8B,
0x5C, 0x72, 0x64, 0xA9, 0x5C, 0x29, 0xC6, 0xA8, 0x3E, 0xE2, 0x51,
0x76, 0x79, 0xAA, 0x02, 0x18, 0xBE, 0xCE, 0xEA, 0x8B, 0x79, 0x86,
0x72, 0x6A, 0x8C, 0xDB},
},
id0: string([]byte{0x4e, 0x00, 0x99, 0xe5, 0x36, 0x78, 0x93, 0x24,
0xff, 0xd5, 0x82, 0xe4, 0xec, 0x0e, 0xa3, 0xb4}),
}
key := crypter.alg2([]byte(""))
keyExp := []byte{0xf8, 0x94, 0x9c, 0x5a, 0xf5, 0xa0, 0xc0, 0xca,
0x30, 0xb8, 0x91, 0xc1, 0xbb, 0x2c, 0x4f, 0xf5}
if string(key) != string(keyExp) {
common.Log.Debug(" Key (%d): % x", len(key), key)
common.Log.Debug("KeyExp (%d): % x", len(keyExp), keyExp)
t.Errorf("alg2 -> key != expected\n")
}
}
// Test algorithm 3.
func TestAlg3(t *testing.T) {
crypter := PdfCrypt{
encrypt: encryptDict{
V: 2,
Length: 128,
},
encryptStd: stdEncryptDict{
R: 3,
P: 0xfffff0c0,
EncryptMetadata: true,
},
id0: string([]byte{0x4e, 0x00, 0x99, 0xe5, 0x36, 0x78, 0x93, 0x24,
0xff, 0xd5, 0x82, 0xe4, 0xec, 0x0e, 0xa3, 0xb4}),
}
Oexp := []byte{0xE6, 0x00, 0xEC, 0xC2, 0x02, 0x88, 0xAD, 0x8B,
0x0d, 0x64, 0xA9, 0x29, 0xC6, 0xA8, 0x3E, 0xE2, 0x51,
0x76, 0x79, 0xAA, 0x02, 0x18, 0xBE, 0xCE, 0xEA, 0x8B, 0x79, 0x86,
0x72, 0x6A, 0x8C, 0xDB}
O, err := crypter.alg3([]byte(""), []byte("test"))
if err != nil {
t.Errorf("crypt alg3 error %s", err)
return
}
if string(O) != string(Oexp) {
common.Log.Debug(" O (%d): % x", len(O), O)
common.Log.Debug("Oexp (%d): % x", len(Oexp), Oexp)
t.Errorf("alg3 -> key != expected")
}
}
// Test algorithm 5 for computing dictionary's U (user password) value
// valid for R >= 3.
func TestAlg5(t *testing.T) {
crypter := PdfCrypt{
encrypt: encryptDict{
V: 2,
Length: 128,
},
encryptStd: stdEncryptDict{
R: 3,
P: 0xfffff0c0,
EncryptMetadata: true,
O: []byte{0xE6, 0x00, 0xEC, 0xC2, 0x02, 0x88, 0xAD, 0x8B,
0x5C, 0x72, 0x64, 0xA9, 0x5C, 0x29, 0xC6, 0xA8, 0x3E, 0xE2, 0x51,
0x76, 0x79, 0xAA, 0x02, 0x18, 0xBE, 0xCE, 0xEA, 0x8B, 0x79, 0x86,
0x72, 0x6A, 0x8C, 0xDB},
},
id0: string([]byte{0x4e, 0x00, 0x99, 0xe5, 0x36, 0x78, 0x93, 0x24,
0xff, 0xd5, 0x82, 0xe4, 0xec, 0x0e, 0xa3, 0xb4}),
}
U, _, err := crypter.alg5([]byte(""))
if err != nil {
t.Errorf("Error %s", err)
return
}
Uexp := []byte{0x59, 0x66, 0x38, 0x6c, 0x76, 0xfe, 0x95, 0x7d, 0x3d,
0x0d, 0x14, 0x3d, 0x36, 0xfd, 0x01, 0x3d, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}
if string(U[0:16]) != string(Uexp[0:16]) {
common.Log.Info(" U (%d): % x", len(U), U)
common.Log.Info("Uexp (%d): % x", len(Uexp), Uexp)
t.Errorf("U != expected\n")
}
}
// Test decrypting. Example with V=2, R=3, using standard algorithm.
func TestDecryption1(t *testing.T) {
crypter := PdfCrypt{
@ -235,121 +94,3 @@ func TestDecryption1(t *testing.T) {
return
}
}
func BenchmarkAlg2b(b *testing.B) {
// hash runs a variable number of rounds, so we need to have a
// deterministic random source to make benchmark results comparable
r := rand.New(rand.NewSource(1234567))
const n = 20
pass := make([]byte, n)
r.Read(pass)
data := make([]byte, n+8+48)
r.Read(data)
user := make([]byte, 48)
r.Read(user)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
_ = alg2b(data, pass, user)
}
}
func TestAESv3(t *testing.T) {
const keySize = 32
seed := time.Now().UnixNano()
rand := rand.New(rand.NewSource(seed))
var cases = []struct {
Name string
EncMeta bool
UserPass string
OwnerPass string
}{
{
Name: "simple", EncMeta: true,
UserPass: "user", OwnerPass: "owner",
},
{
Name: "utf8", EncMeta: false,
UserPass: "æøå-u", OwnerPass: "æøå-o",
},
{
Name: "long", EncMeta: true,
UserPass: strings.Repeat("user", 80),
OwnerPass: strings.Repeat("owner", 80),
},
}
const (
perms = 0x12345678
)
for _, R := range []int{5, 6} {
R := R
t.Run(fmt.Sprintf("R=%d", R), func(t *testing.T) {
for _, c := range cases {
c := c
t.Run(c.Name, func(t *testing.T) {
fkey := make([]byte, keySize)
rand.Read(fkey)
crypt := &PdfCrypt{
encrypt: encryptDict{
V: 5,
},
encryptStd: stdEncryptDict{
R: R, P: perms,
EncryptMetadata: c.EncMeta,
},
encryptionKey: append([]byte{}, fkey...),
}
// generate encryption parameters
err := crypt.generateR6([]byte(c.UserPass), []byte(c.OwnerPass))
if err != nil {
t.Fatal("Failed to encrypt:", err)
}
// Perms and EncryptMetadata are checked as a part of alg2a
// decrypt using user password
crypt.encryptionKey = nil
ok, err := crypt.alg2a([]byte(c.UserPass))
if err != nil || !ok {
t.Error("Failed to authenticate user pass:", err)
} else if !bytes.Equal(crypt.encryptionKey, fkey) {
t.Error("wrong encryption key")
}
// decrypt using owner password
crypt.encryptionKey = nil
ok, err = crypt.alg2a([]byte(c.OwnerPass))
if err != nil || !ok {
t.Error("Failed to authenticate owner pass:", err)
} else if !bytes.Equal(crypt.encryptionKey, fkey) {
t.Error("wrong encryption key")
}
// try to elevate user permissions
crypt.encryptStd.P = math.MaxUint32
crypt.encryptionKey = nil
ok, err = crypt.alg2a([]byte(c.UserPass))
if R == 5 {
// it's actually possible with R=5, since Perms is not generated
if err != nil || !ok {
t.Error("Failed to authenticate user pass:", err)
}
} else {
// not possible in R=6, should return an error
if err == nil || ok {
t.Error("was able to elevate permissions with R=6")
}
}
})
}
})
}
}

View File

@ -1628,6 +1628,7 @@ func (parser *PdfParser) Decrypt(password []byte) (bool, error) {
}
if !authenticated {
// TODO(dennwc): R6 handler will try it automatically, make R4 do the same
authenticated, err = parser.crypter.authenticate([]byte(""))
}