unipdf/pdf/core/crypt.go

1802 lines
48 KiB
Go
Raw Normal View History

/*
* This file is subject to the terms and conditions defined in
2016-07-29 17:23:39 +00:00
* file 'LICENSE.md', which is part of this source code package.
*/
package core
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/md5"
"crypto/rand"
"crypto/rc4"
"crypto/sha256"
"crypto/sha512"
"encoding/binary"
"errors"
"fmt"
"hash"
"io"
"math"
"time"
2016-07-17 19:59:17 +00:00
"github.com/unidoc/unidoc/common"
)
type Version struct {
Major int
Minor int
}
type EncryptInfo struct {
Version
Encrypt *PdfObjectDictionary
ID0, ID1 string
}
// PdfCryptNewEncrypt makes the document crypt handler based on a specified crypt filter.
func PdfCryptNewEncrypt(cf CryptFilter, userPass, ownerPass []byte, perm AccessPermissions) (*PdfCrypt, *EncryptInfo, error) {
crypter := &PdfCrypt{
encryptedObjects: make(map[PdfObject]bool),
cryptFilters: make(cryptFilters),
encryptStd: stdEncryptDict{
P: perm,
EncryptMetadata: true,
},
}
// TODO(dennwc): define it in the CF interface
var vers Version
switch cf.(type) {
case cryptFilterV2:
crypter.encrypt.V = 2
crypter.encryptStd.R = 3
case cryptFilterAESV2:
vers.Major, vers.Minor = 1, 5
crypter.encrypt.V = 4
crypter.encryptStd.R = 4
case cryptFilterAESV3:
vers.Major, vers.Minor = 2, 0
crypter.encrypt.V = 5
crypter.encryptStd.R = 6 // TODO(dennwc): a way to set R=5?
}
if cf != nil {
crypter.encrypt.Length = cf.KeyLength() * 8
}
const (
defaultFilter = StandardCryptFilter
)
crypter.cryptFilters[defaultFilter] = cf
if crypter.encrypt.V >= 4 {
crypter.streamFilter = defaultFilter
crypter.stringFilter = defaultFilter
}
ed := crypter.newEncyptDict()
// Prepare the ID object for the trailer.
hashcode := md5.Sum([]byte(time.Now().Format(time.RFC850)))
id0 := string(hashcode[:])
b := make([]byte, 100)
rand.Read(b)
hashcode = md5.Sum(b)
id1 := string(hashcode[:])
common.Log.Trace("Random b: % x", b)
common.Log.Trace("Gen Id 0: % x", id0)
// Generate encryption parameters
if crypter.encryptStd.R < 5 {
crypter.id0 = string(id0)
// Make the O and U objects.
O, err := crypter.Alg3(userPass, ownerPass)
if err != nil {
common.Log.Debug("ERROR: Error generating O for encryption (%s)", err)
return nil, nil, err
}
crypter.encryptStd.O = []byte(O)
common.Log.Trace("gen O: % x", O)
U, key, err := crypter.Alg5(userPass)
if err != nil {
common.Log.Debug("ERROR: Error generating O for encryption (%s)", err)
return nil, nil, err
}
common.Log.Trace("gen U: % x", U)
crypter.encryptStd.U = []byte(U)
crypter.encryptionKey = key
ed.Set("O", MakeHexString(O))
ed.Set("U", MakeHexString(U))
} else { // R >= 5
err := crypter.GenerateParams(userPass, ownerPass)
if err != nil {
return nil, nil, err
}
ed.Set("O", MakeString(string(crypter.encryptStd.O)))
ed.Set("U", MakeString(string(crypter.encryptStd.U)))
ed.Set("OE", MakeString(string(crypter.encryptStd.OE)))
ed.Set("UE", MakeString(string(crypter.encryptStd.UE)))
ed.Set("EncryptMetadata", MakeBool(crypter.encryptStd.EncryptMetadata))
if crypter.encryptStd.R > 5 {
ed.Set("Perms", MakeString(string(crypter.encryptStd.Perms)))
}
}
if crypter.encrypt.V >= 4 {
if err := crypter.saveCryptFilters(ed); err != nil {
return nil, nil, err
}
}
return crypter, &EncryptInfo{
Version: vers,
Encrypt: ed,
ID0: id0, ID1: id1,
}, nil
}
// PdfCrypt provides PDF encryption/decryption support.
// The PDF standard supports encryption of strings and streams (Section 7.6).
// TODO (v3): Consider unexporting.
type PdfCrypt struct {
encrypt encryptDict
encryptStd stdEncryptDict
id0 string
encryptionKey []byte
decryptedObjects map[PdfObject]bool
encryptedObjects map[PdfObject]bool
authenticated bool
// Crypt filters (V4).
cryptFilters cryptFilters
streamFilter string
stringFilter string
parser *PdfParser
decryptedObjNum map[int]struct{}
ivAESZero []byte // a zero buffer used as an initialization vector for AES
}
func (crypt *PdfCrypt) newEncyptDict() *PdfObjectDictionary {
// Generate the encryption dictionary.
ed := MakeDict()
ed.Set("Filter", MakeName("Standard"))
ed.Set("V", MakeInteger(int64(crypt.encrypt.V)))
ed.Set("Length", MakeInteger(int64(crypt.encrypt.Length)))
ed.Set("P", MakeInteger(int64(crypt.encryptStd.P)))
ed.Set("R", MakeInteger(int64(crypt.encryptStd.R)))
return ed
}
// String returns a descriptive information string about the encryption method used.
func (crypt *PdfCrypt) String() string {
if crypt == nil {
return ""
}
// TODO(dennwc): define a String method on CF
str := crypt.encrypt.Filter + " - "
if crypt.encrypt.V == 0 {
str += "Undocumented algorithm"
} else if crypt.encrypt.V == 1 {
// RC4 or AES (bits: 40)
str += "RC4: 40 bits"
} else if crypt.encrypt.V == 2 {
str += fmt.Sprintf("RC4: %d bits", crypt.encrypt.Length)
} else if crypt.encrypt.V == 3 {
str += "Unpublished algorithm"
} else if crypt.encrypt.V >= 4 {
// Look at CF, StmF, StrF
str += fmt.Sprintf("Stream filter: %s - String filter: %s", crypt.streamFilter, crypt.stringFilter)
str += "; Crypt filters:"
for name, cf := range crypt.cryptFilters {
str += fmt.Sprintf(" - %s: %s (%d)", name, cf.Name(), cf.KeyLength())
}
}
perms := crypt.GetAccessPermissions()
str += fmt.Sprintf(" - %#v", perms)
return str
}
type authEvent string
const (
authEventDocOpen = authEvent("DocOpen")
authEventEFOpen = authEvent("EFOpen")
)
type cryptFiltersDict map[string]cryptFilterDict
// encryptDict is a set of field common to all encryption dictionaries.
type encryptDict struct {
Filter string // (Required) The name of the preferred security handler for this document.
V int // (Required) A code specifying the algorithm to be used in encrypting and decrypting the document.
SubFilter string // Completely specifies the format and interpretation of the encryption dictionary.
Length int // The length of the encryption key, in bits.
CF cryptFiltersDict // Crypt filters dictionary.
StmF string // The filter that shall be used by default when decrypting streams.
StrF string // The filter that shall be used when decrypting all strings in the document.
EFF string // The filter that shall be used when decrypting embedded file streams.
}
// stdEncryptDict is a set of additional fields used in standard encryption dictionary.
type stdEncryptDict struct {
R int // (Required) A number specifying which revision of the standard security handler shall be used.
O, U []byte
OE, UE []byte // R=6
P AccessPermissions
Perms []byte // An encrypted copy of P (16 bytes). Used to verify permissions. R=6
EncryptMetadata bool // Indicates whether the document-level metadata stream shall be encrypted.
}
// AccessPermissions is a bitmask of access permissions for a PDF file.
type AccessPermissions uint32
const (
// PermOwner grants all permissions.
PermOwner = AccessPermissions(math.MaxUint32)
PermPrinting = AccessPermissions(1 << 2) // bit 3
PermModify = AccessPermissions(1 << 3) // bit 4
PermExtractGraphics = AccessPermissions(1 << 4) // bit 5
PermAnnotate = AccessPermissions(1 << 5) // bit 6
// PermFillForms allow form filling, if annotation is disabled? If annotation enabled, is not looked at.
PermFillForms = AccessPermissions(1 << 8) // bit 9
PermDisabilityExtract = AccessPermissions(1 << 9) // bit 10 // TODO: not clear what this means!
// PermRotateInsert allows rotating, editing page order.
PermRotateInsert = AccessPermissions(1 << 10) // bit 11
// PermFullPrintQuality limits print quality (lowres), assuming Printing bit is set.
PermFullPrintQuality = AccessPermissions(1 << 11) // bit 12
)
// Allowed checks if a set of permissions can be granted.
func (p AccessPermissions) Allowed(p2 AccessPermissions) bool {
return p&p2 == p2
2016-07-09 16:40:39 +00:00
}
const padding = "\x28\xBF\x4E\x5E\x4E\x75\x8A\x41\x64\x00\x4E\x56\xFF" +
"\xFA\x01\x08\x2E\x2E\x00\xB6\xD0\x68\x3E\x80\x2F\x0C" +
"\xA9\xFE\x64\x53\x69\x7A"
// StandardCryptFilter is a default name for a standard crypt filter.
const StandardCryptFilter = "StdCF"
func newCryptFiltersV2(length int) cryptFilters {
return cryptFilters{
StandardCryptFilter: NewCryptFilterV2(length),
}
}
2018-09-26 02:16:17 +03:00
// NewCryptFilterV2 creates a RC4-based filter with a specified key length (in bytes).
func NewCryptFilterV2(length int) CryptFilter {
f, err := newCryptFilterV2(cryptFilterDict{Length: length})
if err != nil {
panic(err)
}
return f
}
2018-09-26 02:16:17 +03:00
// NewCryptFilterAESV2 creates an AES-based filter with a 128 bit key (AESV2).
func NewCryptFilterAESV2() CryptFilter {
f, err := newCryptFilterAESV2(cryptFilterDict{})
if err != nil {
panic(err)
}
return f
}
2018-09-26 02:16:17 +03:00
// NewCryptFilterAESV3 creates an AES-based filter with a 256 bit key (AESV3).
func NewCryptFilterAESV3() CryptFilter {
f, err := newCryptFilterAESV3(cryptFilterDict{})
if err != nil {
panic(err)
}
return f
}
// cryptFilters is a map of crypt filter name and underlying CryptFilter info.
type cryptFilters map[string]CryptFilter
// LoadCryptFilters loads crypt filter information from the encryption dictionary (V>=4).
// TODO (v3): Unexport.
func (crypt *PdfCrypt) LoadCryptFilters(ed *PdfObjectDictionary) error {
crypt.cryptFilters = cryptFilters{}
obj := ed.Get("CF")
obj = TraceToDirectObject(obj) // XXX may need to resolve reference...
if ref, isRef := obj.(*PdfObjectReference); isRef {
o, err := crypt.parser.LookupByReference(*ref)
if err != nil {
common.Log.Debug("Error looking up CF reference")
return err
}
obj = TraceToDirectObject(o)
}
cf, ok := obj.(*PdfObjectDictionary)
if !ok {
common.Log.Debug("Invalid CF, type: %T", obj)
return errors.New("Invalid CF")
}
for _, name := range cf.Keys() {
v := cf.Get(name)
if ref, isRef := v.(*PdfObjectReference); isRef {
o, err := crypt.parser.LookupByReference(*ref)
if err != nil {
common.Log.Debug("Error lookup up dictionary reference")
return err
}
v = TraceToDirectObject(o)
}
dict, ok := v.(*PdfObjectDictionary)
if !ok {
return fmt.Errorf("Invalid dict in CF (name %s) - not a dictionary but %T", name, v)
}
if name == "Identity" {
2016-10-31 21:48:25 +00:00
common.Log.Debug("ERROR - Cannot overwrite the identity filter - Trying next")
continue
}
var cfd cryptFilterDict
if err := cfd.ReadFrom(dict); err != nil {
return err
}
fnc, err := getCryptFilterMethod(cfd.CFM)
if err != nil {
return err
}
cf, err := fnc(cfd)
if err != nil {
return err
}
crypt.cryptFilters[string(name)] = cf
}
// Cannot be overwritten.
crypt.cryptFilters["Identity"] = cryptFilteridentity{}
// StrF strings filter.
crypt.stringFilter = "Identity"
if strf, ok := ed.Get("StrF").(*PdfObjectName); ok {
if _, exists := crypt.cryptFilters[string(*strf)]; !exists {
return fmt.Errorf("Crypt filter for StrF not specified in CF dictionary (%s)", *strf)
}
crypt.stringFilter = string(*strf)
}
// StmF streams filter.
crypt.streamFilter = "Identity"
if stmf, ok := ed.Get("StmF").(*PdfObjectName); ok {
if _, exists := crypt.cryptFilters[string(*stmf)]; !exists {
return fmt.Errorf("Crypt filter for StmF not specified in CF dictionary (%s)", *stmf)
}
crypt.streamFilter = string(*stmf)
}
return nil
}
// saveCryptFilters saves crypt filter information to the encryption dictionary (V>=4).
// TODO (v3): Unexport.
func (crypt *PdfCrypt) saveCryptFilters(ed *PdfObjectDictionary) error {
if crypt.encrypt.V < 4 {
return errors.New("can only be used with V>=4")
}
cf := MakeDict()
ed.Set("CF", cf)
for name, filter := range crypt.cryptFilters {
if name == "Identity" {
continue
}
v := cryptFilterToDict(filter, "")
cf.Set(PdfObjectName(name), v)
}
ed.Set("StrF", MakeName(crypt.stringFilter))
ed.Set("StmF", MakeName(crypt.streamFilter))
return nil
}
// PdfCryptNewDecrypt makes the document crypt handler based on the encryption dictionary
// and trailer dictionary. Returns an error on failure to process.
func PdfCryptNewDecrypt(parser *PdfParser, ed, trailer *PdfObjectDictionary) (*PdfCrypt, error) {
crypter := &PdfCrypt{
authenticated: false,
decryptedObjects: make(map[PdfObject]bool),
encryptedObjects: make(map[PdfObject]bool),
decryptedObjNum: make(map[int]struct{}),
parser: parser,
}
filter, ok := ed.Get("Filter").(*PdfObjectName)
if !ok {
2016-10-31 21:48:25 +00:00
common.Log.Debug("ERROR Crypt dictionary missing required Filter field!")
return crypter, errors.New("Required crypt field Filter missing")
}
if *filter != "Standard" {
2016-10-31 21:48:25 +00:00
common.Log.Debug("ERROR Unsupported filter (%s)", *filter)
return crypter, errors.New("Unsupported Filter")
}
crypter.encrypt.Filter = string(*filter)
if subfilter, ok := ed.Get("SubFilter").(*PdfObjectString); ok {
crypter.encrypt.SubFilter = subfilter.Str()
2016-07-17 19:59:17 +00:00
common.Log.Debug("Using subfilter %s", subfilter)
}
if L, ok := ed.Get("Length").(*PdfObjectInteger); ok {
if (*L % 8) != 0 {
2016-10-31 21:48:25 +00:00
common.Log.Debug("ERROR Invalid encryption length")
return crypter, errors.New("Invalid encryption length")
}
crypter.encrypt.Length = int(*L)
} else {
crypter.encrypt.Length = 40
}
crypter.encrypt.V = 0
if v, ok := ed.Get("V").(*PdfObjectInteger); ok {
V := int(*v)
crypter.encrypt.V = V
if V >= 1 && V <= 2 {
// Default algorithm is V2.
crypter.cryptFilters = newCryptFiltersV2(crypter.encrypt.Length)
} else if V >= 4 && V <= 5 {
if err := crypter.LoadCryptFilters(ed); err != nil {
return crypter, err
}
} else {
common.Log.Debug("ERROR Unsupported encryption algo V = %d", V)
return crypter, errors.New("Unsupported algorithm")
}
}
R, ok := ed.Get("R").(*PdfObjectInteger)
if !ok {
return crypter, errors.New("Encrypt dictionary missing R")
}
// TODO(dennwc): according to spec, R should be validated according to V value
if *R < 2 || *R > 6 {
return crypter, fmt.Errorf("Invalid R (%d)", *R)
}
crypter.encryptStd.R = int(*R)
O, ok := ed.Get("O").(*PdfObjectString)
if !ok {
return crypter, errors.New("Encrypt dictionary missing O")
}
if crypter.encryptStd.R == 5 || crypter.encryptStd.R == 6 {
// the spec says =48 bytes, but Acrobat pads them out longer
if len(O.Str()) < 48 {
return crypter, fmt.Errorf("Length(O) < 48 (%d)", len(O.Str()))
}
} else if len(O.Str()) != 32 {
return crypter, fmt.Errorf("Length(O) != 32 (%d)", len(O.Str()))
}
crypter.encryptStd.O = O.Bytes()
U, ok := ed.Get("U").(*PdfObjectString)
if !ok {
return crypter, errors.New("Encrypt dictionary missing U")
}
if crypter.encryptStd.R == 5 || crypter.encryptStd.R == 6 {
// the spec says =48 bytes, but Acrobat pads them out longer
if len(U.Str()) < 48 {
return crypter, fmt.Errorf("Length(U) < 48 (%d)", len(U.Str()))
}
} else if len(U.Str()) != 32 {
// Strictly this does not cause an error.
// If O is OK and others then can still read the file.
common.Log.Debug("Warning: Length(U) != 32 (%d)", len(U.Str()))
//return crypter, errors.New("Length(U) != 32")
}
crypter.encryptStd.U = U.Bytes()
if crypter.encryptStd.R >= 5 {
OE, ok := ed.Get("OE").(*PdfObjectString)
if !ok {
return crypter, errors.New("Encrypt dictionary missing OE")
}
2018-09-26 01:21:07 +03:00
if len(OE.Str()) != 32 {
return crypter, fmt.Errorf("Length(OE) != 32 (%d)", len(OE.Str()))
}
crypter.encryptStd.OE = OE.Bytes()
UE, ok := ed.Get("UE").(*PdfObjectString)
if !ok {
return crypter, errors.New("Encrypt dictionary missing UE")
}
2018-09-26 01:21:07 +03:00
if len(UE.Str()) != 32 {
return crypter, fmt.Errorf("Length(UE) != 32 (%d)", len(UE.Str()))
}
crypter.encryptStd.UE = UE.Bytes()
}
P, ok := ed.Get("P").(*PdfObjectInteger)
if !ok {
return crypter, errors.New("Encrypt dictionary missing permissions attr")
}
crypter.encryptStd.P = AccessPermissions(*P)
if crypter.encryptStd.R == 6 {
Perms, ok := ed.Get("Perms").(*PdfObjectString)
if !ok {
return crypter, errors.New("Encrypt dictionary missing Perms")
}
2018-09-26 01:21:07 +03:00
if len(Perms.Str()) != 16 {
return crypter, fmt.Errorf("Length(Perms) != 16 (%d)", len(Perms.Str()))
}
crypter.encryptStd.Perms = Perms.Bytes()
}
em, ok := ed.Get("EncryptMetadata").(*PdfObjectBool)
if ok {
crypter.encryptStd.EncryptMetadata = bool(*em)
} else {
crypter.encryptStd.EncryptMetadata = true // True by default.
}
// Default: empty ID.
// Strictly, if file is encrypted, the ID should always be specified
// but clearly not everyone is following the specification.
id0 := ""
if idArray, ok := trailer.Get("ID").(*PdfObjectArray); ok && idArray.Len() >= 1 {
id0obj, ok := GetString(idArray.Get(0))
if !ok {
return crypter, errors.New("Invalid trailer ID")
}
id0 = id0obj.Str()
} else {
common.Log.Debug("Trailer ID array missing or invalid!")
}
crypter.id0 = id0
return crypter, nil
}
// GetAccessPermissions returns the PDF access permissions as an AccessPermissions object.
func (crypt *PdfCrypt) GetAccessPermissions() AccessPermissions {
return crypt.encryptStd.P
2016-07-09 16:40:39 +00:00
}
// Check whether the specified password can be used to decrypt the document.
func (crypt *PdfCrypt) authenticate(password []byte) (bool, error) {
// Also build the encryption/decryption key.
crypt.authenticated = false
if crypt.encryptStd.R >= 5 {
authenticated, err := crypt.alg2a(password)
if err != nil {
return false, err
}
crypt.authenticated = authenticated
return authenticated, err
}
// Try user password.
common.Log.Trace("Debugging authentication - user pass")
authenticated, err := crypt.alg6(password)
if err != nil {
return false, err
}
if authenticated {
common.Log.Trace("this.authenticated = True")
crypt.authenticated = true
return true, nil
}
// Try owner password also.
// May not be necessary if only want to get all contents.
// (user pass needs to be known or empty).
common.Log.Trace("Debugging authentication - owner pass")
authenticated, err = crypt.alg7(password)
if err != nil {
return false, err
}
if authenticated {
common.Log.Trace("this.authenticated = True")
crypt.authenticated = true
return true, nil
}
return false, nil
}
// Check access rights and permissions for a specified password. If either user/owner password is specified,
// full rights are granted, otherwise the access rights are specified by the Permissions flag.
//
// The bool flag indicates that the user can access and can view the file.
// The AccessPermissions shows what access the user has for editing etc.
// An error is returned if there was a problem performing the authentication.
func (crypt *PdfCrypt) checkAccessRights(password []byte) (bool, AccessPermissions, error) {
// Try owner password -> full rights.
var (
isOwner bool
err error
)
if crypt.encryptStd.R >= 5 {
var h []byte
h, err = crypt.alg12(password)
if err != nil {
return false, 0, err
}
isOwner = len(h) != 0
} else {
isOwner, err = crypt.alg7(password)
}
if err != nil {
return false, 0, err
}
if isOwner {
// owner -> full rights.
return true, PermOwner, nil
}
// Try user password.
var isUser bool
if crypt.encryptStd.R >= 5 {
var h []byte
h, err = crypt.alg11(password)
if err != nil {
return false, 0, err
}
isUser = len(h) != 0
} else {
isUser, err = crypt.alg6(password)
}
if err != nil {
return false, 0, err
}
if isUser {
// User password specified correctly -> access granted with specified permissions.
return true, crypt.encryptStd.P, nil
}
// Cannot even view the file.
return false, 0, nil
}
func (crypt *PdfCrypt) paddedPass(pass []byte) []byte {
key := make([]byte, 32)
if len(pass) >= 32 {
for i := 0; i < 32; i++ {
key[i] = pass[i]
}
} else {
for i := 0; i < len(pass); i++ {
key[i] = pass[i]
}
for i := len(pass); i < 32; i++ {
key[i] = padding[i-len(pass)]
}
}
return key
}
// Generates a key for encrypting a specific object based on the
// object and generation number, as well as the document encryption key.
func (crypt *PdfCrypt) makeKey(filter string, objNum, genNum uint32, ekey []byte) ([]byte, error) {
f, ok := crypt.cryptFilters[filter]
if !ok {
return nil, fmt.Errorf("Unknown crypt filter (%s)", filter)
}
return f.MakeKey(objNum, genNum, ekey)
}
// encryptDictKeys list all required field for "Encrypt" dictionary.
// It is used as a fingerprint to detect old copies of this dictionary.
var encryptDictKeys = []PdfObjectName{
"V", "R", "O", "U", "P",
}
// Check if object has already been processed.
func (crypt *PdfCrypt) isDecrypted(obj PdfObject) bool {
_, ok := crypt.decryptedObjects[obj]
if ok {
common.Log.Trace("Already decrypted")
return true
}
switch obj := obj.(type) {
case *PdfObjectStream:
if crypt.encryptStd.R != 5 {
if name, ok := obj.Get("Type").(*PdfObjectName); ok && *name == "XRef" {
return true // Cross-reference streams should not be encrypted
}
}
case *PdfIndirectObject:
if _, ok = crypt.decryptedObjNum[int(obj.ObjectNumber)]; ok {
return true
}
switch obj := obj.PdfObject.(type) {
case *PdfObjectDictionary:
// detect old copies of "Encrypt" dictionary
// TODO: find a better way to do it
ok := true
for _, key := range encryptDictKeys {
if obj.Get(key) == nil {
ok = false
break
}
}
if ok {
return true
}
}
}
common.Log.Trace("Not decrypted yet")
return false
}
// Decrypt a buffer with a selected crypt filter.
func (crypt *PdfCrypt) decryptBytes(buf []byte, filter string, okey []byte) ([]byte, error) {
common.Log.Trace("Decrypt bytes")
f, ok := crypt.cryptFilters[filter]
if !ok {
return nil, fmt.Errorf("Unknown crypt filter (%s)", filter)
}
return f.DecryptBytes(buf, okey)
}
// Decrypt an object with specified key. For numbered objects,
// the key argument is not used and a new one is generated based
// on the object and generation number.
// Traverses through all the subobjects (recursive).
//
// Does not look up references.. That should be done prior to calling.
func (crypt *PdfCrypt) Decrypt(obj PdfObject, parentObjNum, parentGenNum int64) error {
if crypt.isDecrypted(obj) {
return nil
}
switch obj := obj.(type) {
case *PdfIndirectObject:
crypt.decryptedObjects[obj] = true
common.Log.Trace("Decrypting indirect %d %d obj!", obj.ObjectNumber, obj.GenerationNumber)
objNum := obj.ObjectNumber
genNum := obj.GenerationNumber
err := crypt.Decrypt(obj.PdfObject, objNum, genNum)
if err != nil {
return err
}
return nil
case *PdfObjectStream:
// Mark as decrypted first to avoid recursive issues.
crypt.decryptedObjects[obj] = true
dict := obj.PdfObjectDictionary
if crypt.encryptStd.R != 5 {
if s, ok := dict.Get("Type").(*PdfObjectName); ok && *s == "XRef" {
return nil // Cross-reference streams should not be encrypted
}
}
objNum := obj.ObjectNumber
genNum := obj.GenerationNumber
common.Log.Trace("Decrypting stream %d %d !", objNum, genNum)
// TODO: Check for crypt filter (V4).
// The Crypt filter shall be the first filter in the Filter array entry.
streamFilter := StandardCryptFilter // Default RC4.
if crypt.encrypt.V >= 4 {
streamFilter = crypt.streamFilter
common.Log.Trace("this.streamFilter = %s", crypt.streamFilter)
if filters, ok := dict.Get("Filter").(*PdfObjectArray); ok {
// Crypt filter can only be the first entry.
if firstFilter, ok := GetName(filters.Get(0)); ok {
if *firstFilter == "Crypt" {
// Crypt filter overriding the default.
// Default option is Identity.
streamFilter = "Identity"
// Check if valid crypt filter specified in the decode params.
if decodeParams, ok := dict.Get("DecodeParms").(*PdfObjectDictionary); ok {
if filterName, ok := decodeParams.Get("Name").(*PdfObjectName); ok {
if _, ok := crypt.cryptFilters[string(*filterName)]; ok {
common.Log.Trace("Using stream filter %s", *filterName)
streamFilter = string(*filterName)
}
}
}
}
}
}
common.Log.Trace("with %s filter", streamFilter)
if streamFilter == "Identity" {
// Identity: pass unchanged.
return nil
}
}
err := crypt.Decrypt(dict, objNum, genNum)
if err != nil {
return err
}
okey, err := crypt.makeKey(streamFilter, uint32(objNum), uint32(genNum), crypt.encryptionKey)
if err != nil {
return err
}
obj.Stream, err = crypt.decryptBytes(obj.Stream, streamFilter, okey)
if err != nil {
return err
}
// Update the length based on the decrypted stream.
dict.Set("Length", MakeInteger(int64(len(obj.Stream))))
return nil
case *PdfObjectString:
common.Log.Trace("Decrypting string!")
stringFilter := StandardCryptFilter
if crypt.encrypt.V >= 4 {
// Currently only support Identity / RC4.
common.Log.Trace("with %s filter", crypt.stringFilter)
if crypt.stringFilter == "Identity" {
// Identity: pass unchanged: No action.
return nil
}
stringFilter = crypt.stringFilter
}
key, err := crypt.makeKey(stringFilter, uint32(parentObjNum), uint32(parentGenNum), crypt.encryptionKey)
if err != nil {
return err
}
// Overwrite the encrypted with decrypted string.
str := obj.Str()
decrypted := make([]byte, len(str))
for i := 0; i < len(str); i++ {
decrypted[i] = str[i]
}
common.Log.Trace("Decrypt string: %s : % x", decrypted, decrypted)
decrypted, err = crypt.decryptBytes(decrypted, stringFilter, key)
if err != nil {
return err
}
obj.val = string(decrypted)
return nil
case *PdfObjectArray:
for _, o := range obj.Elements() {
err := crypt.Decrypt(o, parentObjNum, parentGenNum)
if err != nil {
return err
}
}
return nil
case *PdfObjectDictionary:
isSig := false
if t := obj.Get("Type"); t != nil {
typeStr, ok := t.(*PdfObjectName)
if ok && *typeStr == "Sig" {
isSig = true
}
}
for _, keyidx := range obj.Keys() {
o := obj.Get(keyidx)
// How can we avoid this check, i.e. implement a more smart
// traversal system?
if isSig && string(keyidx) == "Contents" {
// Leave the Contents of a Signature dictionary.
continue
}
if string(keyidx) != "Parent" && string(keyidx) != "Prev" && string(keyidx) != "Last" { // Check not needed?
err := crypt.Decrypt(o, parentObjNum, parentGenNum)
if err != nil {
return err
}
}
}
return nil
}
return nil
}
// Check if object has already been processed.
func (crypt *PdfCrypt) isEncrypted(obj PdfObject) bool {
_, ok := crypt.encryptedObjects[obj]
if ok {
common.Log.Trace("Already encrypted")
return true
}
common.Log.Trace("Not encrypted yet")
return false
}
// Encrypt a buffer with the specified crypt filter and key.
func (crypt *PdfCrypt) encryptBytes(buf []byte, filter string, okey []byte) ([]byte, error) {
common.Log.Trace("Encrypt bytes")
f, ok := crypt.cryptFilters[filter]
if !ok {
return nil, fmt.Errorf("Unknown crypt filter (%s)", filter)
}
return f.EncryptBytes(buf, okey)
}
// Encrypt an object with specified key. For numbered objects,
// the key argument is not used and a new one is generated based
// on the object and generation number.
// Traverses through all the subobjects (recursive).
//
// Does not look up references.. That should be done prior to calling.
func (crypt *PdfCrypt) Encrypt(obj PdfObject, parentObjNum, parentGenNum int64) error {
if crypt.isEncrypted(obj) {
return nil
}
switch obj := obj.(type) {
case *PdfIndirectObject:
crypt.encryptedObjects[obj] = true
common.Log.Trace("Encrypting indirect %d %d obj!", obj.ObjectNumber, obj.GenerationNumber)
objNum := obj.ObjectNumber
genNum := obj.GenerationNumber
err := crypt.Encrypt(obj.PdfObject, objNum, genNum)
if err != nil {
return err
}
return nil
case *PdfObjectStream:
crypt.encryptedObjects[obj] = true
dict := obj.PdfObjectDictionary
if s, ok := dict.Get("Type").(*PdfObjectName); ok && *s == "XRef" {
return nil // Cross-reference streams should not be encrypted
}
objNum := obj.ObjectNumber
genNum := obj.GenerationNumber
common.Log.Trace("Encrypting stream %d %d !", objNum, genNum)
// TODO: Check for crypt filter (V4).
// The Crypt filter shall be the first filter in the Filter array entry.
streamFilter := StandardCryptFilter // Default RC4.
if crypt.encrypt.V >= 4 {
// For now. Need to change when we add support for more than
// Identity / RC4.
streamFilter = crypt.streamFilter
common.Log.Trace("this.streamFilter = %s", crypt.streamFilter)
if filters, ok := dict.Get("Filter").(*PdfObjectArray); ok {
// Crypt filter can only be the first entry.
if firstFilter, ok := GetName(filters.Get(0)); ok {
if *firstFilter == "Crypt" {
// Crypt filter overriding the default.
// Default option is Identity.
streamFilter = "Identity"
// Check if valid crypt filter specified in the decode params.
if decodeParams, ok := dict.Get("DecodeParms").(*PdfObjectDictionary); ok {
if filterName, ok := decodeParams.Get("Name").(*PdfObjectName); ok {
if _, ok := crypt.cryptFilters[string(*filterName)]; ok {
common.Log.Trace("Using stream filter %s", *filterName)
streamFilter = string(*filterName)
}
}
}
}
}
}
common.Log.Trace("with %s filter", streamFilter)
if streamFilter == "Identity" {
// Identity: pass unchanged.
return nil
}
}
err := crypt.Encrypt(obj.PdfObjectDictionary, objNum, genNum)
if err != nil {
return err
}
okey, err := crypt.makeKey(streamFilter, uint32(objNum), uint32(genNum), crypt.encryptionKey)
if err != nil {
return err
}
obj.Stream, err = crypt.encryptBytes(obj.Stream, streamFilter, okey)
if err != nil {
return err
}
// Update the length based on the encrypted stream.
dict.Set("Length", MakeInteger(int64(len(obj.Stream))))
return nil
case *PdfObjectString:
common.Log.Trace("Encrypting string!")
stringFilter := StandardCryptFilter
if crypt.encrypt.V >= 4 {
common.Log.Trace("with %s filter", crypt.stringFilter)
if crypt.stringFilter == "Identity" {
// Identity: pass unchanged: No action.
return nil
}
stringFilter = crypt.stringFilter
}
key, err := crypt.makeKey(stringFilter, uint32(parentObjNum), uint32(parentGenNum), crypt.encryptionKey)
if err != nil {
return err
}
str := obj.Str()
encrypted := make([]byte, len(str))
for i := 0; i < len(str); i++ {
encrypted[i] = str[i]
}
common.Log.Trace("Encrypt string: %s : % x", encrypted, encrypted)
encrypted, err = crypt.encryptBytes(encrypted, stringFilter, key)
if err != nil {
return err
}
obj.val = string(encrypted)
return nil
case *PdfObjectArray:
for _, o := range obj.Elements() {
err := crypt.Encrypt(o, parentObjNum, parentGenNum)
if err != nil {
return err
}
}
return nil
case *PdfObjectDictionary:
isSig := false
if t := obj.Get("Type"); t != nil {
typeStr, ok := t.(*PdfObjectName)
if ok && *typeStr == "Sig" {
isSig = true
}
}
for _, keyidx := range obj.Keys() {
o := obj.Get(keyidx)
// How can we avoid this check, i.e. implement a more smart
// traversal system?
if isSig && string(keyidx) == "Contents" {
// Leave the Contents of a Signature dictionary.
continue
}
if string(keyidx) != "Parent" && string(keyidx) != "Prev" && string(keyidx) != "Last" { // Check not needed?
err := crypt.Encrypt(o, parentObjNum, parentGenNum)
if err != nil {
return err
}
}
}
return nil
}
return nil
}
// aesZeroIV allocates a zero-filled buffer that serves as an initialization vector for AESv3.
func (crypt *PdfCrypt) aesZeroIV() []byte {
if crypt.ivAESZero == nil {
crypt.ivAESZero = make([]byte, aes.BlockSize)
}
return crypt.ivAESZero
}
// alg2a retrieves the encryption key from an encrypted document (R >= 5).
// It returns false if the password was wrong.
// 7.6.4.3.2 Algorithm 2.A (page 83)
func (crypt *PdfCrypt) alg2a(pass []byte) (bool, error) {
// O & U: 32 byte hash + 8 byte Validation Salt + 8 byte Key Salt
// step a: Unicode normalization
// TODO(dennwc): make sure that UTF-8 strings are normalized
// step b: truncate to 127 bytes
if len(pass) > 127 {
pass = pass[:127]
}
// step c: test pass against the owner key
h, err := crypt.alg12(pass)
if err != nil {
return false, err
}
var (
data []byte // data to hash
ekey []byte // encrypted file key
ukey []byte // user key; set only when using owner's password
)
if len(h) != 0 {
// owner password valid
// step d: compute an intermediate owner key
str := make([]byte, len(pass)+8+48)
i := copy(str, pass)
i += copy(str[i:], crypt.encryptStd.O[40:48]) // owner Key Salt
i += copy(str[i:], crypt.encryptStd.U[0:48])
data = str
ekey = crypt.encryptStd.OE
ukey = crypt.encryptStd.U[0:48]
} else {
// check user password
h, err = crypt.alg11(pass)
if err == nil && len(h) == 0 {
// try default password
h, err = crypt.alg11([]byte(""))
}
if err != nil {
return false, err
} else if len(h) == 0 {
// wrong password
return false, nil
}
// step e: compute an intermediate user key
str := make([]byte, len(pass)+8)
i := copy(str, pass)
i += copy(str[i:], crypt.encryptStd.U[40:48]) // user Key Salt
data = str
ekey = crypt.encryptStd.UE
ukey = nil
}
ekey = ekey[:32]
// intermediate key
ikey := crypt.alg2b(data, pass, ukey)
ac, err := aes.NewCipher(ikey[:32])
if err != nil {
panic(err)
}
iv := crypt.aesZeroIV()
cbc := cipher.NewCBCDecrypter(ac, iv)
fkey := make([]byte, 32)
cbc.CryptBlocks(fkey, ekey)
crypt.encryptionKey = fkey
if crypt.encryptStd.R == 5 {
return true, nil
}
return crypt.alg13(fkey)
}
// alg2b computes a hash for R=5 and R=6.
func (crypt *PdfCrypt) alg2b(data, pwd, userKey []byte) []byte {
if crypt.encryptStd.R == 5 {
return alg2b_R5(data)
}
return alg2b(data, pwd, userKey)
}
// alg2b_R5 computes a hash for R=5, used in a deprecated extension.
// It's used the same way as a hash described in Algorithm 2.B, but it doesn't use the original password
// and the user key to calculate the hash.
func alg2b_R5(data []byte) []byte {
h := sha256.New()
h.Write(data)
return h.Sum(nil)
}
// repeat repeats first n bytes of buf until the end of the buffer.
// It assumes that the length of buf is a multiple of n.
func repeat(buf []byte, n int) {
bp := n
for bp < len(buf) {
copy(buf[bp:], buf[:bp])
bp *= 2
}
}
// alg2b computes a hash for R=6.
// 7.6.4.3.3 Algorithm 2.B (page 83)
func alg2b(data, pwd, userKey []byte) []byte {
var (
s256, s384, s512 hash.Hash
)
s256 = sha256.New()
hbuf := make([]byte, 64)
h := s256
h.Write(data)
K := h.Sum(hbuf[:0])
buf := make([]byte, 64*(127+64+48))
round := func(rnd int) (E []byte) {
// step a: repeat pass+K 64 times
n := len(pwd) + len(K) + len(userKey)
part := buf[:n]
i := copy(part, pwd)
i += copy(part[i:], K[:])
i += copy(part[i:], userKey)
if i != n {
panic("wrong size")
}
K1 := buf[:n*64]
repeat(K1, n)
// step b: encrypt K1 with AES-128 CBC
ac, err := aes.NewCipher(K[0:16])
if err != nil {
panic(err)
}
cbc := cipher.NewCBCEncrypter(ac, K[16:32])
cbc.CryptBlocks(K1, K1)
E = K1
// step c: use 16 bytes of E as big-endian int, select the next hash
b := 0
for i := 0; i < 16; i++ {
b += int(E[i] % 3)
}
var h hash.Hash
switch b % 3 {
case 0:
h = s256
case 1:
if s384 == nil {
s384 = sha512.New384()
}
h = s384
case 2:
if s512 == nil {
s512 = sha512.New()
}
h = s512
}
// step d: take the hash of E, use as a new K
h.Reset()
h.Write(E)
K = h.Sum(hbuf[:0])
return E
}
for i := 0; ; {
E := round(i)
b := uint8(E[len(E)-1])
// from the spec, it appears that i should be incremented after
// the test, but that doesn't match what Adobe does
i++
if i >= 64 && b <= uint8(i-32) {
break
}
}
return K[:32]
}
// alg2 computes an encryption key.
func (crypt *PdfCrypt) alg2(pass []byte) []byte {
common.Log.Trace("alg2")
key := crypt.paddedPass(pass)
h := md5.New()
h.Write(key)
// Pass O.
h.Write(crypt.encryptStd.O)
// Pass P (Lower order byte first).
var p = uint32(crypt.encryptStd.P)
var pb []byte
for i := 0; i < 4; i++ {
pb = append(pb, byte(((p >> uint(8*i)) & 0xff)))
}
h.Write(pb)
common.Log.Trace("go P: % x", pb)
// Pass ID[0] from the trailer
h.Write([]byte(crypt.id0))
common.Log.Trace("this.R = %d encryptMetadata %v", crypt.encryptStd.R, crypt.encryptStd.EncryptMetadata)
if (crypt.encryptStd.R >= 4) && !crypt.encryptStd.EncryptMetadata {
h.Write([]byte{0xff, 0xff, 0xff, 0xff})
}
hashb := h.Sum(nil)
if crypt.encryptStd.R >= 3 {
for i := 0; i < 50; i++ {
h = md5.New()
h.Write(hashb[0 : crypt.encrypt.Length/8])
hashb = h.Sum(nil)
}
}
if crypt.encryptStd.R >= 3 {
return hashb[0 : crypt.encrypt.Length/8]
}
return hashb[0:5]
}
// Create the RC4 encryption key.
func (crypt *PdfCrypt) alg3Key(pass []byte) []byte {
h := md5.New()
okey := crypt.paddedPass(pass)
h.Write(okey)
if crypt.encryptStd.R >= 3 {
for i := 0; i < 50; i++ {
hashb := h.Sum(nil)
h = md5.New()
h.Write(hashb)
}
}
encKey := h.Sum(nil)
if crypt.encryptStd.R == 2 {
encKey = encKey[0:5]
} else {
encKey = encKey[0 : crypt.encrypt.Length/8]
}
return encKey
}
// Alg3 computes the encryption dictionarys O (owner password) value.
func (crypt *PdfCrypt) Alg3(upass, opass []byte) (string, error) {
// Return O string val.
O := ""
var encKey []byte
if len(opass) > 0 {
encKey = crypt.alg3Key(opass)
} else {
encKey = crypt.alg3Key(upass)
}
ociph, err := rc4.NewCipher(encKey)
if err != nil {
return O, errors.New("Failed rc4 ciph")
}
ukey := crypt.paddedPass(upass)
encrypted := make([]byte, len(ukey))
ociph.XORKeyStream(encrypted, ukey)
if crypt.encryptStd.R >= 3 {
encKey2 := make([]byte, len(encKey))
for i := 0; i < 19; i++ {
for j := 0; j < len(encKey); j++ {
encKey2[j] = encKey[j] ^ byte(i+1)
}
ciph, err := rc4.NewCipher(encKey2)
if err != nil {
return O, errors.New("Failed rc4 ciph")
}
ciph.XORKeyStream(encrypted, encrypted)
}
}
O = string(encrypted)
return O, nil
}
// alg4 computes the encryption dictionarys U (user password) value (Security handlers of revision 2).
func (crypt *PdfCrypt) alg4(upass []byte) (string, []byte, error) {
U := ""
ekey := crypt.alg2(upass)
ciph, err := rc4.NewCipher(ekey)
if err != nil {
return U, ekey, errors.New("Failed rc4 ciph")
}
s := []byte(padding)
encrypted := make([]byte, len(s))
ciph.XORKeyStream(encrypted, s)
U = string(encrypted)
return U, ekey, nil
}
// Alg5 computes the encryption dictionarys U (user password) value (Security handlers of revision 3 or greater).
func (crypt *PdfCrypt) Alg5(upass []byte) (string, []byte, error) {
U := ""
ekey := crypt.alg2(upass)
h := md5.New()
h.Write([]byte(padding))
h.Write([]byte(crypt.id0))
hash := h.Sum(nil)
common.Log.Trace("Alg5")
common.Log.Trace("ekey: % x", ekey)
common.Log.Trace("ID: % x", crypt.id0)
if len(hash) != 16 {
return U, ekey, errors.New("Hash length not 16 bytes")
}
ciph, err := rc4.NewCipher(ekey)
if err != nil {
return U, ekey, errors.New("Failed rc4 ciph")
}
encrypted := make([]byte, 16)
ciph.XORKeyStream(encrypted, hash)
// Do the following 19 times: Take the output from the previous
// invocation of the RC4 function and pass it as input to a new
// invocation of the function; use an encryption key generated by
// taking each byte of the original encryption key obtained in step
// (a) and performing an XOR (exclusive or) operation between that
// byte and the single-byte value of the iteration counter (from 1 to 19).
ekey2 := make([]byte, len(ekey))
for i := 0; i < 19; i++ {
for j := 0; j < len(ekey); j++ {
ekey2[j] = ekey[j] ^ byte(i+1)
}
ciph, err = rc4.NewCipher(ekey2)
if err != nil {
return U, ekey, errors.New("Failed rc4 ciph")
}
ciph.XORKeyStream(encrypted, encrypted)
common.Log.Trace("i = %d, ekey: % x", i, ekey2)
common.Log.Trace("i = %d -> % x", i, encrypted)
}
bb := make([]byte, 32)
for i := 0; i < 16; i++ {
bb[i] = encrypted[i]
}
// Append 16 bytes of arbitrary padding to the output from the final
// invocation of the RC4 function and store the 32-byte result as
// the value of the U entry in the encryption dictionary.
_, err = rand.Read(bb[16:32])
if err != nil {
return U, ekey, errors.New("Failed to gen rand number")
}
U = string(bb)
return U, ekey, nil
}
// alg6 authenticates the user password.
func (crypt *PdfCrypt) alg6(upass []byte) (bool, error) {
var uo string
var err error
var key []byte
if crypt.encryptStd.R == 2 {
uo, key, err = crypt.alg4(upass)
} else if crypt.encryptStd.R >= 3 {
uo, key, err = crypt.Alg5(upass)
} else {
return false, errors.New("invalid R")
}
if err != nil {
return false, err
}
common.Log.Trace("check: % x == % x ?", string(uo), string(crypt.encryptStd.U))
uGen := string(uo) // Generated U from specified pass.
uDoc := string(crypt.encryptStd.U) // U from the document.
if crypt.encryptStd.R >= 3 {
// comparing on the first 16 bytes in the case of security
// handlers of revision 3 or greater),
if len(uGen) > 16 {
uGen = uGen[0:16]
}
if len(uDoc) > 16 {
uDoc = uDoc[0:16]
}
}
if uGen == uDoc {
crypt.encryptionKey = key
return true, nil
}
return false, nil
}
// alg7 authenticates the owner password.
func (crypt *PdfCrypt) alg7(opass []byte) (bool, error) {
encKey := crypt.alg3Key(opass)
decrypted := make([]byte, len(crypt.encryptStd.O))
if crypt.encryptStd.R == 2 {
ciph, err := rc4.NewCipher(encKey)
if err != nil {
return false, errors.New("Failed cipher")
}
ciph.XORKeyStream(decrypted, crypt.encryptStd.O)
} else if crypt.encryptStd.R >= 3 {
s := append([]byte{}, crypt.encryptStd.O...)
for i := 0; i < 20; i++ {
//newKey := encKey
newKey := append([]byte{}, encKey...)
for j := 0; j < len(encKey); j++ {
newKey[j] ^= byte(19 - i)
}
ciph, err := rc4.NewCipher(newKey)
if err != nil {
return false, errors.New("Failed cipher")
}
ciph.XORKeyStream(decrypted, s)
s = append([]byte{}, decrypted...)
}
} else {
return false, errors.New("invalid R")
}
auth, err := crypt.alg6(decrypted)
if err != nil {
return false, nil
}
return auth, nil
}
// GenerateParams generates encryption parameters for specified passwords.
// Can be called only for R>=5.
func (crypt *PdfCrypt) GenerateParams(upass, opass []byte) error {
if crypt.encryptStd.R < 5 {
// TODO(dennwc): move code for R<5 from PdfWriter.Encrypt
return errors.New("can be used only for R>=5")
}
crypt.encryptionKey = make([]byte, 32)
if _, err := io.ReadFull(rand.Reader, crypt.encryptionKey); err != nil {
return err
}
return crypt.generateR6(upass, opass)
}
// generateR6 is the algorithm opposite to alg2a (R>=5).
// It generates U,O,UE,OE,Perms fields using AESv3 encryption.
// There is no algorithm number assigned to this function in the spec.
func (crypt *PdfCrypt) generateR6(upass, opass []byte) error {
// all these field will be populated by functions below
crypt.encryptStd.U = nil
crypt.encryptStd.O = nil
crypt.encryptStd.UE = nil
crypt.encryptStd.OE = nil
crypt.encryptStd.Perms = nil // populated only for R=6
if len(upass) > 127 {
upass = upass[:127]
}
if len(opass) > 127 {
opass = opass[:127]
}
// generate U and UE
if err := crypt.alg8(upass); err != nil {
return err
}
// generate O and OE
if err := crypt.alg9(opass); err != nil {
return err
}
if crypt.encryptStd.R == 5 {
return nil
}
// generate Perms
return crypt.alg10()
}
// alg8 computes the encryption dictionary's U (user password) and UE (user encryption) values (R>=5).
// 7.6.4.4.6 Algorithm 8 (page 86)
func (crypt *PdfCrypt) alg8(upass []byte) error {
// step a: compute U (user password)
var rbuf [16]byte
if _, err := io.ReadFull(rand.Reader, rbuf[:]); err != nil {
return err
}
valSalt := rbuf[0:8]
keySalt := rbuf[8:16]
str := make([]byte, len(upass)+len(valSalt))
i := copy(str, upass)
i += copy(str[i:], valSalt)
h := crypt.alg2b(str, upass, nil)
U := make([]byte, len(h)+len(valSalt)+len(keySalt))
i = copy(U, h[:32])
i += copy(U[i:], valSalt)
i += copy(U[i:], keySalt)
crypt.encryptStd.U = U
// step b: compute UE (user encryption)
// str still contains a password, reuse it
i = len(upass)
i += copy(str[i:], keySalt)
h = crypt.alg2b(str, upass, nil)
ac, err := aes.NewCipher(h[:32])
if err != nil {
panic(err)
}
iv := crypt.aesZeroIV()
cbc := cipher.NewCBCEncrypter(ac, iv)
UE := make([]byte, 32)
cbc.CryptBlocks(UE, crypt.encryptionKey[:32])
crypt.encryptStd.UE = UE
return nil
}
// alg9 computes the encryption dictionary's O (owner password) and OE (owner encryption) values (R>=5).
// 7.6.4.4.7 Algorithm 9 (page 86)
func (crypt *PdfCrypt) alg9(opass []byte) error {
// step a: compute O (owner password)
var rbuf [16]byte
if _, err := io.ReadFull(rand.Reader, rbuf[:]); err != nil {
return err
}
valSalt := rbuf[0:8]
keySalt := rbuf[8:16]
userKey := crypt.encryptStd.U[:48]
str := make([]byte, len(opass)+len(valSalt)+len(userKey))
i := copy(str, opass)
i += copy(str[i:], valSalt)
i += copy(str[i:], userKey)
h := crypt.alg2b(str, opass, userKey)
O := make([]byte, len(h)+len(valSalt)+len(keySalt))
i = copy(O, h[:32])
i += copy(O[i:], valSalt)
i += copy(O[i:], keySalt)
crypt.encryptStd.O = O
// step b: compute OE (owner encryption)
// str still contains a password and a user key - reuse both, but overwrite the salt
i = len(opass)
i += copy(str[i:], keySalt)
// i += len(userKey)
h = crypt.alg2b(str, opass, userKey)
ac, err := aes.NewCipher(h[:32])
if err != nil {
panic(err)
}
iv := crypt.aesZeroIV()
cbc := cipher.NewCBCEncrypter(ac, iv)
OE := make([]byte, 32)
cbc.CryptBlocks(OE, crypt.encryptionKey[:32])
crypt.encryptStd.OE = OE
return nil
}
// alg10 computes the encryption dictionary's Perms (permissions) value (R=6).
// 7.6.4.4.8 Algorithm 10 (page 87)
func (crypt *PdfCrypt) alg10() error {
// step a: extend permissions to 64 bits
perms := uint64(uint32(crypt.encryptStd.P)) | (math.MaxUint32 << 32)
// step b: record permissions
Perms := make([]byte, 16)
binary.LittleEndian.PutUint64(Perms[:8], perms)
// step c: record EncryptMetadata
if crypt.encryptStd.EncryptMetadata {
Perms[8] = 'T'
} else {
Perms[8] = 'F'
}
// step d: write "adb" magic
copy(Perms[9:12], "adb")
// step e: write 4 bytes of random data
// spec doesn't specify them as generated "from a strong random source",
// but we will use the cryptographic random generator anyway
if _, err := io.ReadFull(rand.Reader, Perms[12:16]); err != nil {
return err
}
// step f: encrypt permissions
ac, err := aes.NewCipher(crypt.encryptionKey[:32])
if err != nil {
panic(err)
}
ecb := newECBEncrypter(ac)
ecb.CryptBlocks(Perms, Perms)
crypt.encryptStd.Perms = Perms[:16]
return nil
}
// alg11 authenticates the user password (R >= 5) and returns the hash.
func (crypt *PdfCrypt) alg11(upass []byte) ([]byte, error) {
str := make([]byte, len(upass)+8)
i := copy(str, upass)
i += copy(str[i:], crypt.encryptStd.U[32:40]) // user Validation Salt
h := crypt.alg2b(str, upass, nil)
h = h[:32]
if !bytes.Equal(h, crypt.encryptStd.U[:32]) {
return nil, nil
}
return h, nil
}
// alg12 authenticates the owner password (R >= 5) and returns the hash.
// 7.6.4.4.10 Algorithm 12 (page 87)
func (crypt *PdfCrypt) alg12(opass []byte) ([]byte, error) {
str := make([]byte, len(opass)+8+48)
i := copy(str, opass)
i += copy(str[i:], crypt.encryptStd.O[32:40]) // owner Validation Salt
i += copy(str[i:], crypt.encryptStd.U[0:48])
h := crypt.alg2b(str, opass, crypt.encryptStd.U[0:48])
h = h[:32]
if !bytes.Equal(h, crypt.encryptStd.O[:32]) {
return nil, nil
}
return h, nil
}
// alg13 validates user permissions (P+EncryptMetadata vs Perms) for R=6.
// 7.6.4.4.11 Algorithm 13 (page 87)
func (crypt *PdfCrypt) alg13(fkey []byte) (bool, error) {
perms := make([]byte, 16)
copy(perms, crypt.encryptStd.Perms[:16])
ac, err := aes.NewCipher(fkey[:32])
if err != nil {
panic(err)
}
ecb := newECBDecrypter(ac)
ecb.CryptBlocks(perms, perms)
if !bytes.Equal(perms[9:12], []byte("adb")) {
return false, errors.New("decoded permissions are invalid")
}
p := AccessPermissions(binary.LittleEndian.Uint32(perms[0:4]))
if p != crypt.encryptStd.P {
return false, errors.New("permissions validation failed")
}
encMeta := true
if perms[8] == 'T' {
encMeta = true
} else if perms[8] == 'F' {
encMeta = false
} else {
return false, errors.New("decoded metadata encryption flag is invalid")
}
if encMeta != crypt.encryptStd.EncryptMetadata {
return false, errors.New("metadata encryption validation failed")
}
return true, nil
}