2018-11-28 23:25:17 +00:00
|
|
|
|
/*
|
|
|
|
|
* This file is subject to the terms and conditions defined in
|
|
|
|
|
* file 'LICENSE.md', which is part of this source code package.
|
|
|
|
|
*/
|
|
|
|
|
|
2018-11-30 16:53:48 +00:00
|
|
|
|
package transform
|
2018-11-28 23:25:17 +00:00
|
|
|
|
|
|
|
|
|
import (
|
|
|
|
|
"fmt"
|
|
|
|
|
"math"
|
|
|
|
|
|
2019-05-16 23:08:40 +03:00
|
|
|
|
"github.com/unidoc/unipdf/v3/common"
|
2018-11-28 23:25:17 +00:00
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
// Matrix is a linear transform matrix in homogenous coordinates.
|
|
|
|
|
// PDF coordinate transforms are always affine so we only need 6 of these. See newMatrix.
|
|
|
|
|
type Matrix [9]float64
|
|
|
|
|
|
|
|
|
|
// IdentityMatrix returns the identity transform.
|
|
|
|
|
func IdentityMatrix() Matrix {
|
|
|
|
|
return NewMatrix(1, 0, 0, 1, 0, 0)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// TranslationMatrix returns a matrix that translates by `tx`, `ty`.
|
|
|
|
|
func TranslationMatrix(tx, ty float64) Matrix {
|
|
|
|
|
return NewMatrix(1, 0, 0, 1, tx, ty)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// NewMatrix returns an affine transform matrix laid out in homogenous coordinates as
|
|
|
|
|
// a b 0
|
|
|
|
|
// c d 0
|
|
|
|
|
// tx ty 1
|
|
|
|
|
func NewMatrix(a, b, c, d, tx, ty float64) Matrix {
|
|
|
|
|
m := Matrix{
|
|
|
|
|
a, b, 0,
|
|
|
|
|
c, d, 0,
|
|
|
|
|
tx, ty, 1,
|
|
|
|
|
}
|
2018-11-30 16:53:48 +00:00
|
|
|
|
m.clampRange()
|
2018-11-28 23:25:17 +00:00
|
|
|
|
return m
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// String returns a string describing `m`.
|
|
|
|
|
func (m Matrix) String() string {
|
|
|
|
|
a, b, c, d, tx, ty := m[0], m[1], m[3], m[4], m[6], m[7]
|
2019-07-18 16:41:47 +10:00
|
|
|
|
return fmt.Sprintf("[%7.4f,%7.4f,%7.4f,%7.4f:%7.4f,%7.4f]", a, b, c, d, tx, ty)
|
2018-11-28 23:25:17 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Set sets `m` to affine transform a,b,c,d,tx,ty.
|
|
|
|
|
func (m *Matrix) Set(a, b, c, d, tx, ty float64) {
|
|
|
|
|
m[0], m[1] = a, b
|
|
|
|
|
m[3], m[4] = c, d
|
|
|
|
|
m[6], m[7] = tx, ty
|
2018-11-30 16:53:48 +00:00
|
|
|
|
m.clampRange()
|
2018-11-28 23:25:17 +00:00
|
|
|
|
}
|
|
|
|
|
|
2019-01-22 18:18:27 +11:00
|
|
|
|
// Concat sets `m` to `b` × `m`.
|
2018-11-28 23:25:17 +00:00
|
|
|
|
// `b` needs to be created by newMatrix. i.e. It must be an affine transform.
|
2019-07-18 16:41:47 +10:00
|
|
|
|
// b00 b01 0 m00 m01 0 b00*m00 + b01*m01 b00*m10 + b01*m11 0
|
|
|
|
|
// b10 b11 0 × m10 m11 0 ➔ b10*m00 + b11*m01 b10*m10 + b11*m11 0
|
|
|
|
|
// b20 b21 1 m20 m21 1 b20*m00 + b21*m10 + m20 b20*m01 + b21*m11 + m21 1
|
2018-11-28 23:25:17 +00:00
|
|
|
|
func (m *Matrix) Concat(b Matrix) {
|
|
|
|
|
*m = Matrix{
|
2019-01-22 18:18:27 +11:00
|
|
|
|
b[0]*m[0] + b[1]*m[3], b[0]*m[1] + b[1]*m[4], 0,
|
|
|
|
|
b[3]*m[0] + b[4]*m[3], b[3]*m[1] + b[4]*m[4], 0,
|
|
|
|
|
b[6]*m[0] + b[7]*m[3] + m[6], b[6]*m[1] + b[7]*m[4] + m[7], 1,
|
2018-11-28 23:25:17 +00:00
|
|
|
|
}
|
2018-11-30 16:53:48 +00:00
|
|
|
|
m.clampRange()
|
2018-11-28 23:25:17 +00:00
|
|
|
|
}
|
|
|
|
|
|
2019-01-22 18:18:27 +11:00
|
|
|
|
// Mult returns `b` × `m`.
|
2018-11-28 23:25:17 +00:00
|
|
|
|
func (m Matrix) Mult(b Matrix) Matrix {
|
|
|
|
|
m.Concat(b)
|
|
|
|
|
return m
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Translate appends a translation of `dx`,`dy` to `m`.
|
|
|
|
|
// m.Translate(dx, dy) is equivalent to m.Concat(NewMatrix(1, 0, 0, 1, dx, dy))
|
|
|
|
|
func (m *Matrix) Translate(dx, dy float64) {
|
|
|
|
|
m[6] += dx
|
|
|
|
|
m[7] += dy
|
2018-11-30 16:53:48 +00:00
|
|
|
|
m.clampRange()
|
2018-11-28 23:25:17 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Translation returns the translation part of `m`.
|
|
|
|
|
func (m *Matrix) Translation() (float64, float64) {
|
|
|
|
|
return m[6], m[7]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Transform returns coordinates `x`,`y` transformed by `m`.
|
|
|
|
|
func (m *Matrix) Transform(x, y float64) (float64, float64) {
|
|
|
|
|
xp := x*m[0] + y*m[1] + m[6]
|
|
|
|
|
yp := x*m[3] + y*m[4] + m[7]
|
|
|
|
|
return xp, yp
|
|
|
|
|
}
|
|
|
|
|
|
2018-11-30 12:17:52 +11:00
|
|
|
|
// ScalingFactorX returns the X scaling of the affine transform.
|
2018-11-28 23:25:17 +00:00
|
|
|
|
func (m *Matrix) ScalingFactorX() float64 {
|
2018-11-30 12:17:52 +11:00
|
|
|
|
return math.Hypot(m[0], m[1])
|
2018-11-28 23:25:17 +00:00
|
|
|
|
}
|
|
|
|
|
|
2018-11-30 12:17:52 +11:00
|
|
|
|
// ScalingFactorY returns the Y scaling of the affine transform.
|
2018-11-28 23:25:17 +00:00
|
|
|
|
func (m *Matrix) ScalingFactorY() float64 {
|
2018-11-30 12:17:52 +11:00
|
|
|
|
return math.Hypot(m[3], m[4])
|
2018-11-28 23:25:17 +00:00
|
|
|
|
}
|
|
|
|
|
|
2018-11-30 12:17:52 +11:00
|
|
|
|
// Angle returns the angle of the affine transform in `m` in degrees.
|
|
|
|
|
func (m *Matrix) Angle() float64 {
|
|
|
|
|
theta := math.Atan2(-m[1], m[0])
|
|
|
|
|
if theta < 0.0 {
|
|
|
|
|
theta += 2 * math.Pi
|
2018-11-28 23:25:17 +00:00
|
|
|
|
}
|
2018-11-30 12:17:52 +11:00
|
|
|
|
return theta / math.Pi * 180.0
|
|
|
|
|
|
2018-11-28 23:25:17 +00:00
|
|
|
|
}
|
|
|
|
|
|
2018-11-30 16:53:48 +00:00
|
|
|
|
// clampRange forces `m` to have reasonable values. It is a guard against crazy values in corrupt PDF files.
|
2018-11-28 23:25:17 +00:00
|
|
|
|
// Currently it clamps elements to [-maxAbsNumber, -maxAbsNumber] to avoid floating point exceptions.
|
2018-11-30 16:53:48 +00:00
|
|
|
|
func (m *Matrix) clampRange() {
|
2018-11-28 23:25:17 +00:00
|
|
|
|
for i, x := range m {
|
|
|
|
|
if x > maxAbsNumber {
|
2019-07-18 16:41:47 +10:00
|
|
|
|
common.Log.Debug("CLAMP: %g -> %g", x, maxAbsNumber)
|
2018-11-28 23:25:17 +00:00
|
|
|
|
m[i] = maxAbsNumber
|
|
|
|
|
} else if x < -maxAbsNumber {
|
2019-07-18 16:41:47 +10:00
|
|
|
|
common.Log.Debug("CLAMP: %g -> %g", x, -maxAbsNumber)
|
2018-11-28 23:25:17 +00:00
|
|
|
|
m[i] = -maxAbsNumber
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2019-07-18 16:41:47 +10:00
|
|
|
|
// Unrealistic returns true if `m` is too small to have been created intentionally.
|
|
|
|
|
// If it returns true then `m` probably contains junk values, due to some processing error in the
|
|
|
|
|
// PDF generator or our code.
|
|
|
|
|
func (m *Matrix) Unrealistic() bool {
|
|
|
|
|
xx, xy, yx, yy := math.Abs(m[0]), math.Abs(m[1]), math.Abs(m[3]), math.Abs(m[4])
|
|
|
|
|
goodXxYy := xx > minSafeScale && yy > minSafeScale
|
|
|
|
|
goodXyYx := xy > minSafeScale && yx > minSafeScale
|
|
|
|
|
return !(goodXxYy || goodXyYx)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// minSafeScale is the minimum matrix scale that is expected to occur in a valid PDF file.
|
|
|
|
|
const minSafeScale = 1e-6
|
|
|
|
|
|
2018-11-30 16:53:48 +00:00
|
|
|
|
// maxAbsNumber defines the maximum absolute value of allowed practical matrix element values as needed
|
|
|
|
|
// to avoid floating point exceptions.
|
|
|
|
|
// TODO(gunnsth): Add reference or point to a specific example PDF that validates this.
|
2018-11-28 23:25:17 +00:00
|
|
|
|
const maxAbsNumber = 1e9
|
2019-07-18 16:41:47 +10:00
|
|
|
|
|
|
|
|
|
// minDeterminant is the smallest matrix determinant we are prepared to deal with.
|
|
|
|
|
// Smaller determinants may lead to rounding errors.
|
|
|
|
|
const minDeterminant = 1.0e-6
|