unioffice/spreadsheet/formula/fnmathtrig.go
Vyacheslav Zgordan f4e59e2275 Financial functions: part 3 (#361)
* PMT, PPMT
* PRICEDISC, fixed YEARFRAC
* PV and handling empty arguments
* RATE
* RECEIVED
* RRI
* ODDLPRICE, ODDLYIELD
* PRICE, PRICEMAT
* SLN
* SYD
* TBILLEQ, TBILLPRICE, TBILLYIELD
* VDB
2019-12-27 12:24:38 +00:00

1666 lines
43 KiB
Go

// Copyright 2017 FoxyUtils ehf. All rights reserved.
//
// Use of this source code is governed by the terms of the Affero GNU General
// Public License version 3.0 as published by the Free Software Foundation and
// appearing in the file LICENSE included in the packaging of this file. A
// commercial license can be purchased on https://unidoc.io.
package formula
import (
"bytes"
"fmt"
"math"
"math/rand"
"strconv"
"strings"
"time"
)
var rnd *rand.Rand
func init() {
rnd = rand.New(rand.NewSource(time.Now().UnixNano()))
RegisterFunction("ABS", makeMathWrapper("ASIN", math.Abs))
RegisterFunction("ACOS", makeMathWrapper("ASIN", math.Acos))
RegisterFunction("ACOSH", makeMathWrapper("ASIN", math.Acosh))
RegisterFunction("_xlfn.ACOT", makeMathWrapper("ACOT", func(v float64) float64 { return math.Pi/2 - math.Atan(v) }))
RegisterFunction("_xlfn.ACOTH", makeMathWrapper("ACOTH", func(v float64) float64 { return math.Atanh(1 / v) }))
RegisterFunction("_xlfn.ARABIC", Arabic)
RegisterFunction("ASIN", makeMathWrapper("ASIN", math.Asin))
RegisterFunction("ASINH", makeMathWrapper("ASINH", math.Asinh))
RegisterFunction("ATAN", makeMathWrapper("ATAN", math.Atan))
RegisterFunction("ATANH", makeMathWrapper("ATANH", math.Atanh))
RegisterFunction("ATAN2", Atan2)
RegisterFunction("_xlfn.BASE", Base)
RegisterFunction("CEILING", Ceiling)
RegisterFunction("_xlfn.CEILING.MATH", CeilingMath)
RegisterFunction("_xlfn.CEILING.PRECISE", CeilingPrecise)
RegisterFunction("COMBIN", Combin)
RegisterFunction("_xlfn.COMBINA", Combina)
RegisterFunction("COS", makeMathWrapper("COS", math.Cos))
RegisterFunction("COSH", makeMathWrapper("COSH", math.Cosh))
RegisterFunction("_xlfn.COT", makeMathWrapperInv("COT", math.Tan))
RegisterFunction("_xlfn.COTH", makeMathWrapperInv("COTH", math.Tanh))
RegisterFunction("_xlfn.CSC", makeMathWrapperInv("CSC", math.Sin))
RegisterFunction("_xlfn.CSCH", makeMathWrapperInv("CSC", math.Sinh))
RegisterFunction("_xlfn.DECIMAL", Decimal)
RegisterFunction("DEGREES", Degrees)
RegisterFunction("EVEN", Even)
RegisterFunction("EXP", makeMathWrapper("EXP", math.Exp))
RegisterFunction("FACT", Fact)
RegisterFunction("FACTDOUBLE", FactDouble)
RegisterFunction("FLOOR", Floor)
RegisterFunction("_xlfn.FLOOR.MATH", FloorMath)
RegisterFunction("_xlfn.FLOOR.PRECISE", FloorPrecise)
RegisterFunction("GCD", GCD)
RegisterFunction("INT", Int)
RegisterFunction("ISO.CEILING", CeilingPrecise)
RegisterFunction("LCM", LCM)
RegisterFunction("LN", makeMathWrapper("LN", math.Log))
RegisterFunction("LOG", Log)
RegisterFunction("LOG10", makeMathWrapper("LOG10", math.Log10))
RegisterFunction("MDETERM", MDeterm)
RegisterFunction("MOD", Mod)
RegisterFunction("MROUND", Mround)
RegisterFunction("MULTINOMIAL", Multinomial)
RegisterFunction("_xlfn.MUNIT", Munit)
RegisterFunction("ODD", Odd)
RegisterFunction("PI", Pi)
RegisterFunction("POWER", Power)
RegisterFunction("PRODUCT", Product)
RegisterFunction("QUOTIENT", Quotient)
RegisterFunction("RADIANS", Radians)
RegisterFunction("RAND", Rand)
RegisterFunction("RANDBETWEEN", RandBetween)
RegisterFunction("ROMAN", Roman)
RegisterFunction("ROUND", Round)
RegisterFunction("ROUNDDOWN", RoundDown)
RegisterFunction("ROUNDUP", RoundUp)
RegisterFunction("_xlfn.SEC", makeMathWrapperInv("SEC", math.Cos))
RegisterFunction("_xlfn.SECH", makeMathWrapperInv("SECH", math.Cosh))
RegisterFunction("SERIESSUM", SeriesSum)
RegisterFunction("SIGN", Sign)
RegisterFunction("SIN", makeMathWrapper("SIN", math.Sin))
RegisterFunction("SINH", makeMathWrapper("SINH", math.Sinh))
RegisterFunction("SQRT", makeMathWrapper("SQRT", math.Sqrt))
RegisterFunction("SQRTPI", makeMathWrapper("SQRTPI", func(v float64) float64 { return math.Sqrt(v * math.Pi) }))
RegisterFunction("SUM", Sum)
RegisterFunction("SUMIF", SumIf)
RegisterFunction("SUMIFS", SumIfs)
RegisterFunction("SUMPRODUCT", SumProduct)
RegisterFunction("SUMSQ", SumSquares)
RegisterFunction("TAN", makeMathWrapper("TAN", math.Tan))
RegisterFunction("TANH", makeMathWrapper("TANH", math.Tanh))
RegisterFunction("TRUNC", Trunc)
}
// makeMathWrapper is used to wrap single argument math functions from the Go
// standard library and present them as a spreadsheet function.
func makeMathWrapper(name string, fn func(x float64) float64) Function {
return func(args []Result) Result {
if len(args) != 1 {
return MakeErrorResult(name + " requires one argument")
}
arg := args[0].AsNumber()
switch arg.Type {
case ResultTypeNumber:
v := fn(arg.ValueNumber)
if math.IsNaN(v) {
return MakeErrorResult(name + " returned NaN")
}
if math.IsInf(v, 0) {
return MakeErrorResult(name + " returned infinity")
}
return MakeNumberResult(v)
case ResultTypeList, ResultTypeString:
return MakeErrorResult(name + " requires a numeric argument")
case ResultTypeError:
return arg
default:
return MakeErrorResult(fmt.Sprintf("unhandled %s() argument type %s", name, arg.Type))
}
}
}
func makeMathWrapperInv(name string, fn func(x float64) float64) Function {
return func(args []Result) Result {
if len(args) != 1 {
return MakeErrorResult(name + " requires one argument")
}
arg := args[0].AsNumber()
switch arg.Type {
case ResultTypeNumber:
v := fn(arg.ValueNumber)
if math.IsNaN(v) {
return MakeErrorResult(name + " returned NaN")
}
if math.IsInf(v, 0) {
return MakeErrorResult(name + " returned infinity")
}
if v == 0 {
return MakeErrorResultType(ErrorTypeDivideByZero, name+" divide by zero")
}
return MakeNumberResult(1 / v)
case ResultTypeList, ResultTypeString:
return MakeErrorResult(name + " requires a numeric argument")
case ResultTypeError:
return arg
default:
return MakeErrorResult(fmt.Sprintf("unhandled %s() argument type %s", name, arg.Type))
}
}
}
// Atan2 implements the Excel ATAN2 function. It accepts two numeric arguments,
// and the arguments are (x,y), reversed from normal to match Excel's behaviour.
func Atan2(args []Result) Result {
if len(args) != 2 {
return MakeErrorResult("ATAN2 requires two arguments")
}
arg1 := args[0].AsNumber()
arg2 := args[1].AsNumber()
if arg1.Type == ResultTypeNumber && arg2.Type == ResultTypeNumber {
// args are swapped here
v := math.Atan2(arg2.ValueNumber, arg1.ValueNumber)
if v != v {
return MakeErrorResult("ATAN2 returned NaN")
}
return MakeNumberResult(v)
}
for _, t := range []ResultType{arg1.Type, arg2.Type} {
switch t {
case ResultTypeList, ResultTypeString:
return MakeErrorResult("ATAN2 requires a numeric argument")
case ResultTypeError:
return arg1
default:
return MakeErrorResult(fmt.Sprintf("unhandled ATAN2() argument type %s", t))
}
}
return MakeErrorResult("unhandled error for ATAN2()")
}
// Arabic implements the Excel ARABIC function which parses roman numerals. It
// accepts one numeric argument.
func Arabic(args []Result) Result {
if len(args) != 1 {
return MakeErrorResult("ARABIC requires one argument")
}
arg := args[0]
switch arg.Type {
case ResultTypeNumber, ResultTypeList, ResultTypeEmpty:
return MakeErrorResult("ARABIC requires a string argument argument")
case ResultTypeString:
res := 0.0
last := 0.0
for _, c := range arg.ValueString {
digit := 0.0
switch c {
case 'I':
digit = 1
case 'V':
digit = 5
case 'X':
digit = 10
case 'L':
digit = 50
case 'C':
digit = 100
case 'D':
digit = 500
case 'M':
digit = 1000
}
res += digit
switch {
// repeated digits
case last == digit &&
(last == 5 || last == 50 || last == 500):
return MakeErrorResult("invalid ARABIC format")
// simpler form
case 2*last == digit:
return MakeErrorResult("invalid ARABIC format")
}
if last < digit {
res -= 2 * last
}
last = digit
}
return MakeNumberResult(res)
case ResultTypeError:
return arg
default:
return MakeErrorResult(fmt.Sprintf("unhandled ACOSH() argument type %s", arg.Type))
}
}
// CeilingMath implements _xlfn.CEILING.MATH which rounds numbers to the nearest
// multiple of the second argument, toward or away from zero as specified by the
// third argument.
func CeilingMath(args []Result) Result {
if len(args) == 0 {
return MakeErrorResult("CEILING.MATH() requires at least one argument")
}
if len(args) > 3 {
return MakeErrorResult("CEILING.MATH() allows at most three arguments")
}
// number to round
number := args[0].AsNumber()
if number.Type != ResultTypeNumber {
return MakeErrorResult("first argument to CEILING.MATH() must be a number")
}
// significance
significance := float64(1)
if number.ValueNumber < 0 {
significance = -1
}
if len(args) > 1 {
sigArg := args[1].AsNumber()
if sigArg.Type != ResultTypeNumber {
return MakeErrorResult("second argument to CEILING.MATH() must be a number")
}
significance = sigArg.ValueNumber
}
// round direction
direction := float64(1)
if len(args) > 2 {
dirArg := args[2].AsNumber()
if dirArg.Type != ResultTypeNumber {
return MakeErrorResult("third argument to CEILING.MATH() must be a number")
}
direction = dirArg.ValueNumber
}
if len(args) == 1 {
return MakeNumberResult(math.Ceil(number.ValueNumber))
}
v := number.ValueNumber
v, res := math.Modf(v / significance)
if res != 0 {
if number.ValueNumber > 0 {
v++
} else if direction < 0 {
v--
}
}
return MakeNumberResult(v * significance)
}
// Ceiling is an implementation of the CEILING function which
// returns the ceiling of a number.
func Ceiling(args []Result) Result {
if len(args) == 0 {
return MakeErrorResult("CEILING() requires at least one argument")
}
if len(args) > 2 {
return MakeErrorResult("CEILING() allows at most two arguments")
}
// number to round
number := args[0].AsNumber()
if number.Type != ResultTypeNumber {
return MakeErrorResult("first argument to CEILING() must be a number")
}
// significance
significance := float64(1)
if number.ValueNumber < 0 {
significance = -1
}
if len(args) > 1 {
sigArg := args[1].AsNumber()
if sigArg.Type != ResultTypeNumber {
return MakeErrorResult("second argument to CEILING() must be a number")
}
significance = sigArg.ValueNumber
}
if significance < 0 && number.ValueNumber > 0 {
return MakeErrorResultType(ErrorTypeNum, "negative sig to CEILING() invalid")
}
if len(args) == 1 {
return MakeNumberResult(math.Ceil(number.ValueNumber))
}
v := number.ValueNumber
v, res := math.Modf(v / significance)
if res > 0 {
v++
}
return MakeNumberResult(v * significance)
}
// CeilingPrecise is an implementation of the CEILING.PRECISE function which
// returns the ceiling of a number.
func CeilingPrecise(args []Result) Result {
if len(args) == 0 {
return MakeErrorResult("CEILING.PRECISE() requires at least one argument")
}
if len(args) > 2 {
return MakeErrorResult("CEILING.PRECISE() allows at most two arguments")
}
// number to round
number := args[0].AsNumber()
if number.Type != ResultTypeNumber {
return MakeErrorResult("first argument to CEILING.PRECISE() must be a number")
}
// significance
significance := float64(1)
if number.ValueNumber < 0 {
significance = -1
}
if len(args) > 1 {
sigArg := args[1].AsNumber()
if sigArg.Type != ResultTypeNumber {
return MakeErrorResult("second argument to CEILING.PRECISE() must be a number")
}
// don't care about sign of significance
significance = math.Abs(sigArg.ValueNumber)
}
if len(args) == 1 {
return MakeNumberResult(math.Ceil(number.ValueNumber))
}
v := number.ValueNumber
v, res := math.Modf(v / significance)
if res != 0 {
if number.ValueNumber > 0 {
v++
}
}
return MakeNumberResult(v * significance)
}
// Base is an implementation of the Excel BASE function that returns a string
// form of an integer in a specified base and of a minimum length with padded
// zeros.
func Base(args []Result) Result {
if len(args) < 2 {
return MakeErrorResult("BASE() requires at least two arguments")
}
if len(args) > 3 {
return MakeErrorResult("BASE() allows at most three arguments")
}
// number to convert
number := args[0].AsNumber()
if number.Type != ResultTypeNumber {
return MakeErrorResult("first argument to BASE() must be a number")
}
radixArg := args[1].AsNumber()
if radixArg.Type != ResultTypeNumber {
return MakeErrorResult("second argument to BASE() must be a number")
}
radix := int(radixArg.ValueNumber)
if radix < 0 || radix > 36 {
return MakeErrorResult("radix must be in the range [0,36]")
}
// min length of result
minLength := 0
if len(args) > 2 {
lenArg := args[2].AsNumber()
if lenArg.Type != ResultTypeNumber {
return MakeErrorResult("third argument to BASE() must be a number")
}
minLength = int(lenArg.ValueNumber)
}
s := strconv.FormatInt(int64(number.ValueNumber), radix)
if len(s) < minLength {
s = strings.Repeat("0", minLength-len(s)) + s
}
return MakeStringResult(s)
}
// Combin is an implementation of the Excel COMBINA function whic returns the
// number of combinations.
func Combin(args []Result) Result {
if len(args) != 2 {
return MakeErrorResult("COMBIN() requires two argument")
}
nArg := args[0].AsNumber()
kArg := args[1].AsNumber()
if nArg.Type != ResultTypeNumber || kArg.Type != ResultTypeNumber {
return MakeErrorResult("COMBIN() requires numeric arguments")
}
n := math.Trunc(nArg.ValueNumber)
k := math.Trunc(kArg.ValueNumber)
if k > n {
return MakeErrorResult("COMBIN() requires k <= n")
}
if k == n || k == 0 {
return MakeNumberResult(1)
}
res := float64(1)
for i := float64(1); i <= k; i++ {
res *= (n + 1 - i) / i
}
return MakeNumberResult(res)
}
// Combina is an implementation of the Excel COMBINA function whic returns the
// number of combinations with repetitions.
func Combina(args []Result) Result {
if len(args) != 2 {
return MakeErrorResult("COMBINA() requires two argument")
}
nArg := args[0].AsNumber()
kArg := args[1].AsNumber()
if nArg.Type != ResultTypeNumber || kArg.Type != ResultTypeNumber {
return MakeErrorResult("COMBINA() requires numeric arguments")
}
n := math.Trunc(nArg.ValueNumber)
k := math.Trunc(kArg.ValueNumber)
if n < k {
return MakeErrorResult("COMBINA() requires n > k")
}
if n == 0 {
return MakeNumberResult(0)
}
args[0] = MakeNumberResult(n + k - 1)
args[1] = MakeNumberResult(n - 1)
return Combin(args)
}
// Decimal is an implementation of the Excel function DECIMAL() that parses a string
// in a given base and returns the numeric result.
func Decimal(args []Result) Result {
if len(args) != 2 {
return MakeErrorResult("DECIMAL() requires two arguments")
}
sArg := args[0].AsString()
if sArg.Type != ResultTypeString {
return MakeErrorResult("DECIMAL() requires string first argument")
}
baseArg := args[1].AsNumber()
if baseArg.Type != ResultTypeNumber {
return MakeErrorResult("DECIMAL() requires number second argument")
}
sv := sArg.ValueString
if len(sv) > 2 && (strings.HasPrefix(sv, "0x") || strings.HasPrefix(sv, "0X")) {
sv = sv[2:]
}
i, err := strconv.ParseInt(sv, int(baseArg.ValueNumber), 64)
if err != nil {
return MakeErrorResult("DECIMAL() error in conversion")
}
return MakeNumberResult(float64(i))
}
// Degrees is an implementation of the Excel function DEGREES() that converts
// radians to degrees.
func Degrees(args []Result) Result {
if len(args) != 1 {
return MakeErrorResult("DEGREES() requires one argument")
}
vArg := args[0].AsNumber()
if vArg.Type != ResultTypeNumber {
return MakeErrorResult("DEGREES() requires number argument")
}
return MakeNumberResult(180.0 / math.Pi * vArg.ValueNumber)
}
// Even is an implementation of the Excel EVEN() that rounds a number to the
// nearest even integer.
func Even(args []Result) Result {
if len(args) != 1 {
return MakeErrorResult("EVEN() requires one argument")
}
vArg := args[0].AsNumber()
if vArg.Type != ResultTypeNumber {
return MakeErrorResult("EVEN() requires number argument")
}
sign := math.Signbit(vArg.ValueNumber)
m, r := math.Modf(vArg.ValueNumber / 2)
v := m * 2
if r != 0 {
if !sign {
v += 2
} else {
v -= 2
}
}
return MakeNumberResult(v)
}
func fact(f float64) float64 {
res := float64(1)
for i := float64(2); i <= f; i++ {
res *= i
}
return res
}
// Fact is an implementation of the excel FACT function which returns the
// factorial of a positive numeric input.
func Fact(args []Result) Result {
if len(args) != 1 {
return MakeErrorResult("FACT() accepts a single numeric argument")
}
vArg := args[0].AsNumber()
if vArg.Type != ResultTypeNumber {
return MakeErrorResult("FACT() accepts a single numeric argument")
}
if vArg.ValueNumber < 0 {
return MakeErrorResult("FACT() accepts only positive arguments")
}
return MakeNumberResult(fact(vArg.ValueNumber))
}
// FactDouble is an implementation of the excel FACTDOUBLE function which
// returns the double factorial of a positive numeric input.
func FactDouble(args []Result) Result {
if len(args) != 1 {
return MakeErrorResult("FACTDOUBLE() accepts a single numeric argument")
}
vArg := args[0].AsNumber()
if vArg.Type != ResultTypeNumber {
return MakeErrorResult("FACTDOUBLE() accepts a single numeric argument")
}
if vArg.ValueNumber < 0 {
return MakeErrorResult("FACTDOUBLE() accepts only positive arguments")
}
res := float64(1)
v := math.Trunc(vArg.ValueNumber)
for i := v; i > 1; i -= 2 {
res *= i
}
return MakeNumberResult(res)
}
// FloorMath implements _xlfn.FLOOR.MATH which rounds numbers down to the
// nearest multiple of the second argument, toward or away from zero as
// specified by the third argument.
func FloorMath(args []Result) Result {
if len(args) == 0 {
return MakeErrorResult("FLOOR.MATH() requires at least one argument")
}
if len(args) > 3 {
return MakeErrorResult("FLOOR.MATH() allows at most three arguments")
}
// number to round
number := args[0].AsNumber()
if number.Type != ResultTypeNumber {
return MakeErrorResult("first argument to FLOOR.MATH() must be a number")
}
// significance
significance := float64(1)
if number.ValueNumber < 0 {
significance = -1
}
if len(args) > 1 {
sigArg := args[1].AsNumber()
if sigArg.Type != ResultTypeNumber {
return MakeErrorResult("second argument to FLOOR.MATH() must be a number")
}
significance = sigArg.ValueNumber
}
// round direction
direction := float64(1)
if len(args) > 2 {
dirArg := args[2].AsNumber()
if dirArg.Type != ResultTypeNumber {
return MakeErrorResult("third argument to FLOOR.MATH() must be a number")
}
direction = dirArg.ValueNumber
}
if len(args) == 1 {
return MakeNumberResult(math.Floor(number.ValueNumber))
}
v := number.ValueNumber
v, res := math.Modf(v / significance)
if res != 0 && number.ValueNumber < 0 && direction > 0 {
v++
}
return MakeNumberResult(v * significance)
}
// Floor is an implementation of the FlOOR function.
func Floor(args []Result) Result {
if len(args) != 2 {
return MakeErrorResult("FLOOR() requires two arguments")
}
// number to round
number := args[0].AsNumber()
if number.Type != ResultTypeNumber {
return MakeErrorResult("first argument to FLOOR() must be a number")
}
// significance
var significance float64
sigArg := args[1].AsNumber()
if sigArg.Type != ResultTypeNumber {
return MakeErrorResult("second argument to FLOOR() must be a number")
}
significance = sigArg.ValueNumber
if significance < 0 && number.ValueNumber >= 0 {
return MakeErrorResultType(ErrorTypeNum, "invalid arguments to FLOOR")
}
v := number.ValueNumber
v, res := math.Modf(v / significance)
if res != 0 {
if number.ValueNumber < 0 && res < 0 {
v--
}
}
return MakeNumberResult(v * significance)
}
// FloorPrecise is an implementation of the FlOOR.PRECISE function.
func FloorPrecise(args []Result) Result {
if len(args) == 0 {
return MakeErrorResult("FLOOR.PRECISE() requires at least one argument")
}
if len(args) > 2 {
return MakeErrorResult("FLOOR.PRECISE() allows at most two arguments")
}
// number to round
number := args[0].AsNumber()
if number.Type != ResultTypeNumber {
return MakeErrorResult("first argument to FLOOR.PRECISE() must be a number")
}
// significance
significance := float64(1)
if number.ValueNumber < 0 {
significance = -1
}
if len(args) > 1 {
sigArg := args[1].AsNumber()
if sigArg.Type != ResultTypeNumber {
return MakeErrorResult("second argument to FLOOR.PRECISE() must be a number")
}
// don't care about sign of significance
significance = math.Abs(sigArg.ValueNumber)
}
if len(args) == 1 {
return MakeNumberResult(math.Floor(number.ValueNumber))
}
v := number.ValueNumber
v, res := math.Modf(v / significance)
if res != 0 {
if number.ValueNumber < 0 {
v--
}
}
return MakeNumberResult(v * significance)
}
func gcd(a, b float64) float64 {
a = math.Trunc(a)
b = math.Trunc(b)
if a == 0 {
return b
}
if b == 0 {
return a
}
for a != b {
if a > b {
a = a - b
} else {
b = b - a
}
}
return a
}
// GCD implements the Excel GCD() function which returns the greatest common
// divisor of a range of numbers.
func GCD(args []Result) Result {
if len(args) == 0 {
return MakeErrorResult("GCD() requires at least one argument")
}
numbers := []float64{}
for _, arg := range args {
switch arg.Type {
case ResultTypeString:
na := arg.AsNumber()
if na.Type != ResultTypeNumber {
return MakeErrorResult("GCD() only accepts numeric arguments")
}
numbers = append(numbers, na.ValueNumber)
case ResultTypeList, ResultTypeArray:
res := GCD(arg.ListValues())
if res.Type != ResultTypeNumber {
return res
}
numbers = append(numbers, res.ValueNumber)
case ResultTypeNumber:
numbers = append(numbers, arg.ValueNumber)
case ResultTypeError:
return arg
default:
return MakeErrorResult(fmt.Sprintf("GCD() unsupported argument type %s", arg.Type))
}
}
if numbers[0] < 0 {
return MakeErrorResult("GCD() only accepts positive arguments")
}
if len(numbers) == 1 {
return MakeNumberResult(numbers[0])
}
res := numbers[0]
for i := 1; i < len(numbers); i++ {
if numbers[i] < 0 {
return MakeErrorResult("GCD() only accepts positive arguments")
}
res = gcd(res, numbers[i])
}
return MakeNumberResult(res)
}
func lcm(a, b float64) float64 {
a = math.Trunc(a)
b = math.Trunc(b)
if a == 0 && b == 0 {
return 0
}
return a * b / gcd(a, b)
}
// LCM implements the Excel LCM() function which returns the least common
// multiple of a range of numbers.
func LCM(args []Result) Result {
if len(args) == 0 {
return MakeErrorResult("LCM() requires at least one argument")
}
numbers := []float64{}
for _, arg := range args {
switch arg.Type {
case ResultTypeString:
na := arg.AsNumber()
if na.Type != ResultTypeNumber {
return MakeErrorResult("LCM() only accepts numeric arguments")
}
numbers = append(numbers, na.ValueNumber)
case ResultTypeList:
res := LCM(arg.ValueList)
if res.Type != ResultTypeNumber {
return res
}
numbers = append(numbers, res.ValueNumber)
case ResultTypeNumber:
numbers = append(numbers, arg.ValueNumber)
case ResultTypeError:
return arg
}
}
if numbers[0] < 0 {
return MakeErrorResult("LCM() only accepts positive arguments")
}
if len(numbers) == 1 {
return MakeNumberResult(numbers[0])
}
res := numbers[0]
for i := 1; i < len(numbers); i++ {
if numbers[i] < 0 {
return MakeErrorResult("LCM() only accepts positive arguments")
}
res = lcm(res, numbers[i])
}
return MakeNumberResult(res)
}
// Int is an implementation of the Excel INT() function that rounds a number
// down to an integer.
func Int(args []Result) Result {
if len(args) != 1 {
return MakeErrorResult("INT() requires a single numeric argument")
}
nArg := args[0].AsNumber()
if nArg.Type != ResultTypeNumber {
return MakeErrorResult("INT() requires a single numeric argument")
}
trunc, rem := math.Modf(nArg.ValueNumber)
if rem < 0 {
trunc--
}
return MakeNumberResult(trunc)
}
// Log implements the Excel LOG function which returns the log of a number. By
// default the result is base 10, however the second argument to the function
// can specify a different base.
func Log(args []Result) Result {
if len(args) == 0 {
return MakeErrorResult("LOG() requires at least one numeric argument")
}
if len(args) > 2 {
return MakeErrorResult("LOG() accepts a maximum of two arguments")
}
nArg := args[0].AsNumber()
if nArg.Type != ResultTypeNumber {
return MakeErrorResult("LOG() requires at least one numeric argument")
}
base := 10.0
if len(args) > 1 {
bArg := args[1].AsNumber()
if bArg.Type != ResultTypeNumber {
return MakeErrorResult("LOG() requires second argument to be numeric")
}
base = args[1].ValueNumber
}
if nArg.ValueNumber == 0 {
return MakeErrorResult("LOG() requires first argument to be non-zero")
}
if base == 0 {
return MakeErrorResult("LOG() requires second argument to be non-zero")
}
return MakeNumberResult(math.Log(nArg.ValueNumber) / math.Log(base))
}
func minor(sqMtx [][]Result, idx int) [][]Result {
ret := [][]Result{}
for i := range sqMtx {
if i == 0 {
continue
}
row := []Result{}
for j := range sqMtx {
if j == idx {
continue
}
row = append(row, sqMtx[i][j])
}
ret = append(ret, row)
}
return ret
}
func det(sqMtx [][]Result) float64 {
// two by two
if len(sqMtx) == 2 {
m00 := sqMtx[0][0].AsNumber()
m01 := sqMtx[0][1].AsNumber()
m10 := sqMtx[1][0].AsNumber()
m11 := sqMtx[1][1].AsNumber()
if m00.Type != ResultTypeNumber || m01.Type != ResultTypeNumber ||
m10.Type != ResultTypeNumber || m11.Type != ResultTypeNumber {
return math.NaN()
}
return m00.ValueNumber*m11.ValueNumber -
m10.ValueNumber*m01.ValueNumber
}
res := float64(0)
sgn := float64(1)
for j := range sqMtx {
res += sgn * sqMtx[0][j].ValueNumber * det(minor(sqMtx, j))
sgn *= -1
}
return res
}
// MDeterm is an implementation of the Excel MDETERM which finds the determinant
// of a matrix.
func MDeterm(args []Result) Result {
if len(args) != 1 {
return MakeErrorResult("MDETERM() requires a single array argument")
}
mtx := args[0]
if mtx.Type != ResultTypeArray {
return MakeErrorResult("MDETERM() requires a single array argument")
}
numRows := len(mtx.ValueArray)
for _, row := range mtx.ValueArray {
if len(row) != numRows {
return MakeErrorResult("MDETERM() requires a square matrix")
}
}
return MakeNumberResult(det(mtx.ValueArray))
}
// Mod is an implementation of the Excel MOD function which returns the
// remainder after division. It requires two numeric argumnts.
func Mod(args []Result) Result {
if len(args) != 2 {
return MakeErrorResult("MOD() requires two numeric arguments")
}
n := args[0].AsNumber()
d := args[1].AsNumber()
if n.Type != ResultTypeNumber || d.Type != ResultTypeNumber {
return MakeErrorResult("MOD() requires two numeric arguments")
}
if d.ValueNumber == 0 {
return MakeErrorResultType(ErrorTypeDivideByZero, "MOD() divide by zero")
}
// Per MS page, MOD(n, d) = n - d*INT(n/d)
// where INT is trunc in:
trunc, rem := math.Modf(n.ValueNumber / d.ValueNumber)
if rem < 0 {
trunc--
}
return MakeNumberResult(n.ValueNumber - d.ValueNumber*trunc)
}
// Mround is an implementation of the Excel MROUND function. It is not a
// generic rounding function and has some oddities to match Excel's behavior.
func Mround(args []Result) Result {
if len(args) != 2 {
return MakeErrorResult("MROUND() requires two numeric arguments")
}
// number to round
number := args[0].AsNumber()
if number.Type != ResultTypeNumber {
return MakeErrorResult("first argument to MROUND() must be a number")
}
// significance
significance := float64(1)
sigArg := args[1].AsNumber()
if sigArg.Type != ResultTypeNumber {
return MakeErrorResult("second argument to MROUND() must be a number")
}
significance = sigArg.ValueNumber
if significance < 0 && number.ValueNumber > 0 ||
significance > 0 && number.ValueNumber < 0 {
return MakeErrorResult("MROUND() argument signs must match")
}
v := number.ValueNumber
v, res := math.Modf(v / significance)
if math.Trunc(res+0.5) > 0 {
v++
}
return MakeNumberResult(v * significance)
}
func multinomial(args []Result) (float64, float64, Result) {
num := 0.0
denom := 1.0
for _, arg := range args {
switch arg.Type {
case ResultTypeNumber:
num += arg.ValueNumber
denom *= fact(arg.ValueNumber)
case ResultTypeList, ResultTypeArray:
n, d, e := multinomial(arg.ListValues())
num += n
denom *= fact(d)
if e.Type == ResultTypeError {
return 0, 0, e
}
case ResultTypeString:
return 0, 0, MakeErrorResult("MULTINOMIAL() requires numeric arguments")
case ResultTypeError:
return 0, 0, arg
}
}
return num, denom, empty
}
// Multinomial implements the excel MULTINOMIAL function.
func Multinomial(args []Result) Result {
if len(args) < 1 {
return MakeErrorResult("MULTINOMIAL() requires at least one numeric input")
}
num, denom, err := multinomial(args)
if err.Type == ResultTypeError {
return err
}
return MakeNumberResult(fact(num) / denom)
}
// Munit is an implementation of the Excel MUNIT function that returns an
// identity matrix.
func Munit(args []Result) Result {
if len(args) != 1 {
return MakeErrorResult("MUNIT() requires one numeric input")
}
dim := args[0].AsNumber()
if dim.Type != ResultTypeNumber {
return MakeErrorResult("MUNIT() requires one numeric input")
}
dimInt := int(dim.ValueNumber)
mtx := make([][]Result, 0, dimInt)
for i := 0; i < dimInt; i++ {
row := make([]Result, dimInt)
for j := 0; j < dimInt; j++ {
if i == j {
row[j] = MakeNumberResult(1.0)
} else {
row[j] = MakeNumberResult(0.0)
}
}
mtx = append(mtx, row)
}
return MakeArrayResult(mtx)
}
// Odd is an implementation of the Excel ODD() that rounds a number to the
// nearest odd integer.
func Odd(args []Result) Result {
if len(args) != 1 {
return MakeErrorResult("ODD() requires one argument")
}
vArg := args[0].AsNumber()
if vArg.Type != ResultTypeNumber {
return MakeErrorResult("ODD() requires number argument")
}
sign := math.Signbit(vArg.ValueNumber)
m, r := math.Modf((vArg.ValueNumber - 1) / 2)
v := m*2 + 1
if r != 0 {
if !sign {
v += 2
} else {
v -= 2
}
}
return MakeNumberResult(v)
}
// Pi is an implementation of the Excel Pi() function that just returns the Pi
// constant.
func Pi(args []Result) Result {
if len(args) != 0 {
return MakeErrorResult("PI() accepts no arguments")
}
return MakeNumberResult(math.Pi)
}
// Power is an implementation of the Excel POWER function that raises a number
// to a power. It requires two numeric arguments.
func Power(args []Result) Result {
if len(args) != 2 {
return MakeErrorResult("POWER() requires two numeric arguments")
}
number := args[0].AsNumber()
if number.Type != ResultTypeNumber {
return MakeErrorResult("first argument to POWER() must be a number")
}
exp := args[1].AsNumber()
if exp.Type != ResultTypeNumber {
return MakeErrorResult("second argument to POWER() must be a number")
}
return MakeNumberResult(math.Pow(number.ValueNumber, exp.ValueNumber))
}
// Product is an implementation of the Excel PRODUCT() function.
func Product(args []Result) Result {
res := 1.0
for _, a := range args {
a = a.AsNumber()
switch a.Type {
case ResultTypeNumber:
res *= a.ValueNumber
case ResultTypeList, ResultTypeArray:
subSum := Product(a.ListValues())
if subSum.Type != ResultTypeNumber {
return subSum
}
res *= subSum.ValueNumber
case ResultTypeString:
// treated as zero by Excel
case ResultTypeError:
return a
case ResultTypeEmpty:
// skip
default:
return MakeErrorResult(fmt.Sprintf("unhandled PRODUCT() argument type %s", a.Type))
}
}
return MakeNumberResult(res)
}
// Quotient is an implementation of the Excel QUOTIENT function that returns the
// integer portion of division.
func Quotient(args []Result) Result {
if len(args) != 2 {
return MakeErrorResult("QUOTIENT() requires two numeric arguments")
}
arg1 := args[0].AsNumber()
arg2 := args[1].AsNumber()
if arg1.Type != ResultTypeNumber || arg2.Type != ResultTypeNumber {
return MakeErrorResult("QUOTIENT() requires two numeric arguments")
}
if arg2.ValueNumber == 0 {
return MakeErrorResultType(ErrorTypeDivideByZero, "QUOTIENT() divide by zero")
}
return MakeNumberResult(math.Trunc(arg1.ValueNumber / arg2.ValueNumber))
}
// Radians is an implementation of the Excel function RADIANS() that converts
// degrees to radians.
func Radians(args []Result) Result {
if len(args) != 1 {
return MakeErrorResult("RADIANS() requires one argument")
}
vArg := args[0].AsNumber()
if vArg.Type != ResultTypeNumber {
return MakeErrorResult("RADIANS() requires number argument")
}
return MakeNumberResult(math.Pi / 180.0 * vArg.ValueNumber)
}
// Rand is an implementation of the Excel RAND() function that returns random
// numbers in the range [0,1).
func Rand(args []Result) Result {
if len(args) != 0 {
return MakeErrorResult("RAND() accepts no arguments")
}
return MakeNumberResult(rnd.Float64())
}
// RandBetween is an implementation of the Excel RANDBETWEEN() function that returns a random
// integer in the range specified.
func RandBetween(args []Result) Result {
if len(args) != 2 {
return MakeErrorResult("RANDBETWEEN() requires two numeric arguments")
}
arg1 := args[0].AsNumber()
arg2 := args[1].AsNumber()
if arg1.Type != ResultTypeNumber || arg2.Type != ResultTypeNumber {
return MakeErrorResult("RANDBETWEEN() requires two numeric arguments")
}
if arg2.ValueNumber < arg1.ValueNumber {
return MakeErrorResult("RANDBETWEEN() requires second argument to be larger")
}
bottom := int64(arg1.ValueNumber)
top := int64(arg2.ValueNumber)
return MakeNumberResult(float64(rnd.Int63n(top-bottom+1) + bottom))
}
type ri struct {
n float64
s string
}
var r1tables = []ri{
{1000, "M"},
{900, "CM"},
{500, "D"},
{400, "CD"},
{100, "C"},
{90, "XC"},
{50, "L"},
{40, "XL"},
{10, "X"},
{9, "IX"},
{5, "V"},
{4, "IV"},
{1, "I"},
}
var r2tables = []ri{
{1000, "M"},
{950, "LM"},
{900, "CM"},
{500, "D"},
{450, "LD"},
{400, "CD"},
{100, "C"},
{95, "VC"},
{90, "XC"},
{50, "L"},
{45, "VL"},
{40, "XL"},
{10, "X"},
{9, "IX"},
{5, "V"},
{4, "IV"},
{1, "I"},
}
var r3tables = []ri{
{1000, "M"},
{990, "XM"},
{950, "LM"},
{900, "CM"},
{500, "D"},
{490, "XD"},
{450, "LD"},
{400, "CD"},
{100, "C"},
{99, "IC"},
{90, "XC"},
{50, "L"},
{45, "VL"},
{40, "XL"},
{10, "X"},
{9, "IX"},
{5, "V"},
{4, "IV"},
{1, "I"},
}
var r4tables = []ri{
{1000, "M"},
{995, "VM"},
{990, "XM"},
{950, "LM"},
{900, "CM"},
{500, "D"},
{495, "VD"},
{490, "XD"},
{450, "LD"},
{400, "CD"},
{100, "C"},
{99, "IC"},
{90, "XC"},
{50, "L"},
{45, "VL"},
{40, "XL"},
{10, "X"},
{9, "IX"},
{5, "V"},
{4, "IV"},
{1, "I"},
}
var r5tables = []ri{
{1000, "M"},
{999, "IM"},
{995, "VM"},
{990, "XM"},
{950, "LM"},
{900, "CM"},
{500, "D"},
{499, "ID"},
{495, "VD"},
{490, "XD"},
{450, "LD"},
{400, "CD"},
{100, "C"},
{99, "IC"},
{90, "XC"},
{50, "L"},
{45, "VL"},
{40, "XL"},
{10, "X"},
{9, "IX"},
{5, "V"},
{4, "IV"},
{1, "I"},
}
// Roman is an implementation of the Excel ROMAN function that convers numbers
// to roman numerals in one of 5 formats.
func Roman(args []Result) Result {
if len(args) == 0 {
return MakeErrorResult("ROMAN() requires at least one numeric argument")
}
if len(args) > 2 {
return MakeErrorResult("ROMAN() requires at most two numeric arguments")
}
nArg := args[0].AsNumber()
if nArg.Type != ResultTypeNumber {
return MakeErrorResult("ROMAN() requires at least one numeric argument")
}
format := 0
if len(args) > 1 {
fmtArg := args[1]
if fmtArg.Type != ResultTypeNumber {
return MakeErrorResult("ROMAN() requires second argument to be numeric")
}
format = int(fmtArg.ValueNumber)
if format < 0 {
format = 0
} else if format > 4 {
format = 4
}
}
dt := r1tables
switch format {
case 1:
dt = r2tables
case 2:
dt = r3tables
case 3:
dt = r4tables
case 4:
dt = r5tables
}
v := math.Trunc(nArg.ValueNumber)
buf := bytes.Buffer{}
for _, r := range dt {
for v >= r.n {
buf.WriteString(r.s)
v -= r.n
}
}
return MakeStringResult(buf.String())
}
type rmode byte
const (
closest rmode = iota
down
up
)
// Round is an implementation of the Excel ROUND function that rounds a number
// to a specified number of digits.
func round(args []Result, mode rmode) Result {
if len(args) == 0 {
return MakeErrorResult("ROUND() requires at least one numeric arguments")
}
// number to round
number := args[0].AsNumber()
if number.Type != ResultTypeNumber {
return MakeErrorResult("first argument to ROUND() must be a number")
}
digits := float64(0)
if len(args) > 1 {
digitArg := args[1].AsNumber()
if digitArg.Type != ResultTypeNumber {
return MakeErrorResult("second argument to ROUND() must be a number")
}
digits = digitArg.ValueNumber
}
v := number.ValueNumber
significance := 1.0
if digits > 0 {
significance = math.Pow(1/10.0, digits)
} else {
significance = math.Pow(10.0, -digits)
}
v, res := math.Modf(v / significance)
switch mode {
case closest:
const eps = 0.499999999
if res >= eps {
v++
} else if res <= -eps {
v--
}
case down:
// do nothing, truncates
case up:
if res > 0 {
v++
} else if res < 0 {
v--
}
}
return MakeNumberResult(v * significance)
}
// Round is an implementation of the Excel ROUND function that rounds a number
// to a specified number of digits.
func Round(args []Result) Result {
return round(args, closest)
}
// RoundDown is an implementation of the Excel ROUNDDOWN function that rounds a number
// down to a specified number of digits.
func RoundDown(args []Result) Result {
return round(args, down)
}
// RoundUp is an implementation of the Excel ROUNDUP function that rounds a number
// up to a specified number of digits.
func RoundUp(args []Result) Result {
return round(args, up)
}
// SeriesSum implements the Excel SERIESSUM function.
func SeriesSum(args []Result) Result {
if len(args) != 4 {
return MakeErrorResult("SERIESSUM() requires 4 arguments")
}
x := args[0].AsNumber()
n := args[1].AsNumber()
m := args[2].AsNumber()
coeffs := args[3].ListValues()
if x.Type != ResultTypeNumber || n.Type != ResultTypeNumber || m.Type != ResultTypeNumber {
return MakeErrorResult("SERIESSUM() requires first three arguments to be numeric")
}
res := float64(0)
for i, c := range coeffs {
res += c.ValueNumber * math.Pow(x.ValueNumber, n.ValueNumber+float64(i)*m.ValueNumber)
}
return MakeNumberResult(res)
}
func Sign(args []Result) Result {
if len(args) != 1 {
return MakeErrorResult("SIGN() requires one argument")
}
vArg := args[0].AsNumber()
if vArg.Type != ResultTypeNumber {
return MakeErrorResult("SIGN() requires a numeric argument")
}
if vArg.ValueNumber < 0 {
return MakeNumberResult(-1)
} else if vArg.ValueNumber > 0 {
return MakeNumberResult(1)
}
return MakeNumberResult(0)
}
// Sum is an implementation of the Excel SUM() function.
func Sum(args []Result) Result {
// Sum returns zero with no arguments
res := MakeNumberResult(0)
for _, a := range args {
a = a.AsNumber()
switch a.Type {
case ResultTypeNumber:
res.ValueNumber += a.ValueNumber
case ResultTypeList, ResultTypeArray:
subSum := Sum(a.ListValues())
// error as sum returns only numbers and errors
if subSum.Type != ResultTypeNumber {
return subSum
}
res.ValueNumber += subSum.ValueNumber
case ResultTypeString:
// treated as zero by Excel
case ResultTypeError:
return a
case ResultTypeEmpty:
// skip
default:
return MakeErrorResult(fmt.Sprintf("unhandled SUM() argument type %s", a.Type))
}
}
return res
}
// SumIf implements the SUMIF function.
func SumIf(args []Result) Result {
if len(args) < 3 {
return MakeErrorResult("SUMIF requires three arguments")
}
arrResult := args[0]
if arrResult.Type != ResultTypeArray && arrResult.Type != ResultTypeList {
return MakeErrorResult("SUMIF requires first argument of type array")
}
arr := arrayFromRange(arrResult)
sumArrResult := args[2]
if sumArrResult.Type != ResultTypeArray && sumArrResult.Type != ResultTypeList {
return MakeErrorResult("SUMIF requires last argument of type array")
}
sumArr := arrayFromRange(sumArrResult)
criteria := parseCriteria(args[1])
sum := 0.0
for ir, r := range arr {
for ic, value := range r {
if compare(value, criteria) {
sum += sumArr[ir][ic].ValueNumber
}
}
}
return MakeNumberResult(sum)
}
// SumIfs implements the SUMIFS function.
func SumIfs(args []Result) Result {
errorResult := checkIfsRanges(args, true, "SUMIFS")
if errorResult.Type != ResultTypeEmpty {
return errorResult
}
match := getIfsMatch(args[1:])
sum := 0.0
sumArr := arrayFromRange(args[0])
for _, indexes := range match {
sum += sumArr[indexes.rowIndex][indexes.colIndex].ValueNumber
}
return MakeNumberResult(float64(sum))
}
// SumProduct is an implementation of the Excel SUMPRODUCT() function.
func SumProduct(args []Result) Result {
if len(args) == 0 {
return MakeErrorResult("SUMPRODUCT() requires at least one argument")
}
t := args[0].Type
for _, a := range args {
if a.Type != t {
return MakeErrorResult("SUMPRODUCT() requires all arguments of the same type")
}
}
switch t {
case ResultTypeNumber:
return Product(args)
case ResultTypeList, ResultTypeArray:
n := len(args[0].ListValues())
res := make([]float64, n)
for i := range res {
res[i] = 1.0
}
for _, a := range args {
if len(a.ListValues()) != n {
return MakeErrorResult("SUMPRODUCT() requires all arguments to have the same dimension")
}
for i, v := range a.ListValues() {
v = v.AsNumber()
if v.Type != ResultTypeNumber {
return MakeErrorResult("SUMPRODUCT() requires all arguments to be numeric")
}
res[i] = res[i] * v.ValueNumber
}
}
v := 0.0
for _, r := range res {
v += r
}
return MakeNumberResult(v)
}
return MakeNumberResult(1.0)
}
// SumSquares is an implementation of the Excel SUMSQ() function.
func SumSquares(args []Result) Result {
// Sum returns zero with no arguments
res := MakeNumberResult(0)
for _, a := range args {
a = a.AsNumber()
switch a.Type {
case ResultTypeNumber:
res.ValueNumber += a.ValueNumber * a.ValueNumber
case ResultTypeList, ResultTypeArray:
subSum := SumSquares(a.ListValues())
// error as sum returns only numbers and errors
if subSum.Type != ResultTypeNumber {
return subSum
}
res.ValueNumber += subSum.ValueNumber
case ResultTypeString:
// treated as zero by Excel
case ResultTypeError:
return a
case ResultTypeEmpty:
// skip
default:
return MakeErrorResult(fmt.Sprintf("unhandled SUMSQUARES() argument type %s", a.Type))
}
}
return res
}
func Trunc(args []Result) Result {
if len(args) == 0 {
return MakeErrorResult("TRUNC() requires at least one numeric arguments")
}
// number to truncate
number := args[0].AsNumber()
if number.Type != ResultTypeNumber {
return MakeErrorResult("first argument to TRUNC() must be a number")
}
digits := float64(0)
if len(args) > 1 {
digitArg := args[1].AsNumber()
if digitArg.Type != ResultTypeNumber {
return MakeErrorResult("second argument to TRUNC() must be a number")
}
digits = digitArg.ValueNumber
}
v := number.ValueNumber
significance := 1.0
if digits >= 0 {
significance = math.Pow(1/10.0, digits)
} else {
// Excel returns zero for this case
return MakeNumberResult(0)
}
v, res := math.Modf(v / significance)
eps := 0.99999
if res > eps {
v++
} else if res < -eps {
v--
}
_ = res
return MakeNumberResult(v * significance)
}