mirror of
https://github.com/unidoc/unioffice.git
synced 2025-05-01 13:48:55 +08:00

- EVEN - EXP - FACT - FACTDOUBLE - FLOOR.MATH - FLOOR.PRECISE - GCD - INT - ISO.CEILING - LCM - LN - LOG - LOG10
747 lines
20 KiB
Go
747 lines
20 KiB
Go
// Copyright 2017 Baliance. All rights reserved.
|
|
//
|
|
// Use of this source code is governed by the terms of the Affero GNU General
|
|
// Public License version 3.0 as published by the Free Software Foundation and
|
|
// appearing in the file LICENSE included in the packaging of this file. A
|
|
// commercial license can be purchased by contacting sales@baliance.com.
|
|
|
|
package formula
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"strconv"
|
|
"strings"
|
|
)
|
|
|
|
func init() {
|
|
RegisterFunction("ABS", makeMathWrapper("ASIN", math.Abs))
|
|
RegisterFunction("ACOS", makeMathWrapper("ASIN", math.Acos))
|
|
RegisterFunction("ACOSH", makeMathWrapper("ASIN", math.Acosh))
|
|
// TODO: RegisterFunction("ACOT", Acot) /// Excel 2013+
|
|
// TODO: RegisterFunction("ACOTH", Acoth) /// Excel 2013+
|
|
// TODO: RegisterFunction("_xlfn.AGGREGATE", Aggregate) // lots of dependencies
|
|
RegisterFunction("_xlfn.ARABIC", Arabic)
|
|
RegisterFunction("ASIN", makeMathWrapper("ASIN", math.Asin))
|
|
RegisterFunction("ASINH", makeMathWrapper("ASINH", math.Asinh))
|
|
RegisterFunction("ATAN", makeMathWrapper("ATAN", math.Atan))
|
|
RegisterFunction("ATANH", makeMathWrapper("ATANH", math.Atanh))
|
|
RegisterFunction("ATAN2", Atan2)
|
|
RegisterFunction("_xlfn.BASE", Base)
|
|
// RegisterFunction("CEILING", ) // TODO: figure out how this acts, Libre doesn't use it
|
|
RegisterFunction("_xlfn.CEILING.MATH", CeilingMath)
|
|
RegisterFunction("_xlfn.CEILING.PRECISE", CeilingPrecise)
|
|
RegisterFunction("COMBIN", Combin)
|
|
RegisterFunction("_xlfn.COMBINA", Combina)
|
|
RegisterFunction("COS", makeMathWrapper("COS", math.Cos))
|
|
RegisterFunction("COSH", makeMathWrapper("COSH", math.Cosh))
|
|
//RegisterFunction("COT",
|
|
//RegisterFunction("COTH"
|
|
//RegisterFunction("CSC"
|
|
//RegisterFunction("CSCH"
|
|
RegisterFunction("_xlfn.DECIMAL", Decimal)
|
|
RegisterFunction("DEGREES", Degrees)
|
|
RegisterFunction("EVEN", Even)
|
|
RegisterFunction("EXP", makeMathWrapper("EXP", math.Exp))
|
|
RegisterFunction("FACT", Fact)
|
|
RegisterFunction("FACTDOUBLE", FactDouble)
|
|
//RegisterFunction("FLOOR", )
|
|
RegisterFunction("_xlfn.FLOOR.MATH", FloorMath)
|
|
RegisterFunction("_xlfn.FLOOR.PRECISE", FloorPrecise)
|
|
RegisterFunction("GCD", GCD)
|
|
RegisterFunction("INT", Int)
|
|
RegisterFunction("ISO.CEILING", CeilingPrecise) // appears to be the same from what I can tell
|
|
RegisterFunction("LCM", LCM)
|
|
RegisterFunction("LN", makeMathWrapper("LN", math.Log))
|
|
RegisterFunction("LOG", Log)
|
|
RegisterFunction("LOG10", makeMathWrapper("LOG10", math.Log10))
|
|
RegisterFunction("PI", Pi)
|
|
}
|
|
|
|
// makeMathWrapper is used to wrap single argument math functions from the Go
|
|
// standard library and present them as a spreadsheet function.
|
|
func makeMathWrapper(name string, fn func(x float64) float64) Function {
|
|
return func(args []Result) Result {
|
|
if len(args) != 1 {
|
|
return MakeErrorResult(name + " requires one argument")
|
|
}
|
|
|
|
arg := args[0].AsNumber()
|
|
switch arg.Type {
|
|
case ResultTypeNumber:
|
|
v := fn(arg.ValueNumber)
|
|
if math.IsNaN(v) {
|
|
return MakeErrorResult(name + " returned NaN")
|
|
}
|
|
if math.IsInf(v, 0) {
|
|
return MakeErrorResult(name + " returned infinity")
|
|
}
|
|
return MakeNumberResult(v)
|
|
case ResultTypeList, ResultTypeString:
|
|
return MakeErrorResult(name + " requires a numeric argument")
|
|
case ResultTypeError:
|
|
return arg
|
|
default:
|
|
return MakeErrorResult(fmt.Sprintf("unhandled %s() argument type %s", name, arg.Type))
|
|
}
|
|
}
|
|
}
|
|
|
|
// Atan2 implements the Excel ATAN2 function. It accepts two numeric arguments,
|
|
// and the arguments are (x,y), reversed from normal to match Excel's behaviour.
|
|
func Atan2(args []Result) Result {
|
|
if len(args) != 2 {
|
|
return MakeErrorResult("ATAN2 requires two arguments")
|
|
}
|
|
|
|
arg1 := args[0].AsNumber()
|
|
arg2 := args[1].AsNumber()
|
|
if arg1.Type == ResultTypeNumber && arg2.Type == ResultTypeNumber {
|
|
// args are swapped here
|
|
v := math.Atan2(arg2.ValueNumber, arg1.ValueNumber)
|
|
if v != v {
|
|
return MakeErrorResult("ATAN2 returned NaN")
|
|
}
|
|
return MakeNumberResult(v)
|
|
}
|
|
|
|
for _, t := range []ResultType{arg1.Type, arg2.Type} {
|
|
switch t {
|
|
case ResultTypeList, ResultTypeString:
|
|
return MakeErrorResult("ATAN2 requires a numeric argument")
|
|
case ResultTypeError:
|
|
return arg1
|
|
default:
|
|
return MakeErrorResult(fmt.Sprintf("unhandled ATAN2() argument type %s", t))
|
|
}
|
|
}
|
|
return MakeErrorResult("unhandled error for ATAN2()")
|
|
}
|
|
|
|
// Arabic implements the Excel ARABIC function which parses roman numerals. It
|
|
// accepts one numeric argument.
|
|
func Arabic(args []Result) Result {
|
|
if len(args) != 1 {
|
|
return MakeErrorResult("ARABIC requires one argument")
|
|
}
|
|
arg := args[0]
|
|
switch arg.Type {
|
|
case ResultTypeNumber, ResultTypeList, ResultTypeEmpty:
|
|
return MakeErrorResult("ARABIC requires a string argument argument")
|
|
case ResultTypeString:
|
|
res := 0.0
|
|
last := 0.0
|
|
for _, c := range arg.ValueString {
|
|
digit := 0.0
|
|
switch c {
|
|
case 'I':
|
|
digit = 1
|
|
case 'V':
|
|
digit = 5
|
|
case 'X':
|
|
digit = 10
|
|
case 'L':
|
|
digit = 50
|
|
case 'C':
|
|
digit = 100
|
|
case 'D':
|
|
digit = 500
|
|
case 'M':
|
|
digit = 1000
|
|
}
|
|
res += digit
|
|
switch {
|
|
// repeated digits
|
|
case last == digit &&
|
|
(last == 5 || last == 50 || last == 500):
|
|
return MakeErrorResult("invalid ARABIC format")
|
|
// simpler form
|
|
case 2*last == digit:
|
|
return MakeErrorResult("invalid ARABIC format")
|
|
}
|
|
if last < digit {
|
|
res -= 2 * last
|
|
}
|
|
last = digit
|
|
}
|
|
|
|
return MakeNumberResult(res)
|
|
case ResultTypeError:
|
|
return arg
|
|
default:
|
|
return MakeErrorResult(fmt.Sprintf("unhandled ACOSH() argument type %s", arg.Type))
|
|
}
|
|
}
|
|
|
|
// CeilingMath implements _xlfn.CEILING.MATH which rounds numbers to the nearest
|
|
// multiple of the second argument, toward or away from zero as specified by the
|
|
// third argument.
|
|
func CeilingMath(args []Result) Result {
|
|
if len(args) == 0 {
|
|
return MakeErrorResult("CEILING.MATH() requires at least one argument")
|
|
}
|
|
if len(args) > 3 {
|
|
return MakeErrorResult("CEILING.MATH() allows at most three arguments")
|
|
}
|
|
// number to round
|
|
number := args[0].AsNumber()
|
|
if number.Type != ResultTypeNumber {
|
|
return MakeErrorResult("first argument to CEILING.MATH() must be a number")
|
|
}
|
|
|
|
// significance
|
|
significance := float64(1)
|
|
if number.ValueNumber < 0 {
|
|
significance = -1
|
|
}
|
|
if len(args) > 1 {
|
|
sigArg := args[1].AsNumber()
|
|
if sigArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("second argument to CEILING.MATH() must be a number")
|
|
}
|
|
significance = sigArg.ValueNumber
|
|
}
|
|
|
|
// round direction
|
|
direction := float64(1)
|
|
if len(args) > 2 {
|
|
dirArg := args[2].AsNumber()
|
|
if dirArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("third argument to CEILING.MATH() must be a number")
|
|
}
|
|
direction = dirArg.ValueNumber
|
|
}
|
|
|
|
if len(args) == 1 {
|
|
return MakeNumberResult(math.Ceil(number.ValueNumber))
|
|
}
|
|
|
|
v := number.ValueNumber
|
|
v, res := math.Modf(v / significance)
|
|
if res != 0 {
|
|
if number.ValueNumber > 0 {
|
|
v++
|
|
} else if direction < 0 {
|
|
v--
|
|
}
|
|
}
|
|
return MakeNumberResult(v * significance)
|
|
}
|
|
|
|
// CeilingPrecise is an implementation of the CEILING.PRECISE function which
|
|
// returns the ceiling of a number.
|
|
func CeilingPrecise(args []Result) Result {
|
|
if len(args) == 0 {
|
|
return MakeErrorResult("CEILING.PRECISE() requires at least one argument")
|
|
}
|
|
if len(args) > 2 {
|
|
return MakeErrorResult("CEILING.PRECISE() allows at most two arguments")
|
|
}
|
|
// number to round
|
|
number := args[0].AsNumber()
|
|
if number.Type != ResultTypeNumber {
|
|
return MakeErrorResult("first argument to CEILING.PRECISE() must be a number")
|
|
}
|
|
|
|
// significance
|
|
significance := float64(1)
|
|
if number.ValueNumber < 0 {
|
|
significance = -1
|
|
}
|
|
if len(args) > 1 {
|
|
sigArg := args[1].AsNumber()
|
|
if sigArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("second argument to CEILING.MATH() must be a number")
|
|
}
|
|
// don't care about sign of significance
|
|
significance = math.Abs(sigArg.ValueNumber)
|
|
}
|
|
|
|
if len(args) == 1 {
|
|
return MakeNumberResult(math.Ceil(number.ValueNumber))
|
|
}
|
|
|
|
v := number.ValueNumber
|
|
v, res := math.Modf(v / significance)
|
|
if res != 0 {
|
|
if number.ValueNumber > 0 {
|
|
v++
|
|
}
|
|
}
|
|
return MakeNumberResult(v * significance)
|
|
}
|
|
|
|
// Base is an implementation of the Excel BASE function that returns a string
|
|
// form of an integer in a specified base and of a minimum length with padded
|
|
// zeros.
|
|
func Base(args []Result) Result {
|
|
if len(args) < 2 {
|
|
return MakeErrorResult("BASE() requires at least two arguments")
|
|
}
|
|
if len(args) > 3 {
|
|
return MakeErrorResult("BASE() allows at most three arguments")
|
|
}
|
|
// number to convert
|
|
number := args[0].AsNumber()
|
|
if number.Type != ResultTypeNumber {
|
|
return MakeErrorResult("first argument to BASE() must be a number")
|
|
}
|
|
|
|
radixArg := args[1].AsNumber()
|
|
if radixArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("second argument to BASE() must be a number")
|
|
}
|
|
radix := int(radixArg.ValueNumber)
|
|
if radix < 0 || radix > 36 {
|
|
return MakeErrorResult("radix must be in the range [0,36]")
|
|
}
|
|
|
|
// min length of result
|
|
minLength := 0
|
|
if len(args) > 2 {
|
|
lenArg := args[2].AsNumber()
|
|
if lenArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("third argument to BASE() must be a number")
|
|
}
|
|
minLength = int(lenArg.ValueNumber)
|
|
}
|
|
|
|
s := strconv.FormatInt(int64(number.ValueNumber), radix)
|
|
if len(s) < minLength {
|
|
s = strings.Repeat("0", minLength-len(s)) + s
|
|
}
|
|
return MakeStringResult(s)
|
|
}
|
|
|
|
// Combin is an implementation of the Excel COMBINA function whic returns the
|
|
// number of combinations.
|
|
func Combin(args []Result) Result {
|
|
if len(args) != 2 {
|
|
return MakeErrorResult("COMBIN() requires two argument")
|
|
}
|
|
nArg := args[0].AsNumber()
|
|
kArg := args[1].AsNumber()
|
|
if nArg.Type != ResultTypeNumber || kArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("COMBIN() requires numeric arguments")
|
|
}
|
|
n := math.Trunc(nArg.ValueNumber)
|
|
k := math.Trunc(kArg.ValueNumber)
|
|
if k > n {
|
|
return MakeErrorResult("COMBIN() requires k <= n")
|
|
}
|
|
if k == n || k == 0 {
|
|
return MakeNumberResult(1)
|
|
}
|
|
|
|
res := float64(1)
|
|
for i := float64(1); i <= k; i++ {
|
|
res *= (n + 1 - i) / i
|
|
}
|
|
|
|
return MakeNumberResult(res)
|
|
}
|
|
|
|
// Combina is an implementation of the Excel COMBINA function whic returns the
|
|
// number of combinations with repetitions.
|
|
func Combina(args []Result) Result {
|
|
if len(args) != 2 {
|
|
return MakeErrorResult("COMBINA() requires two argument")
|
|
}
|
|
nArg := args[0].AsNumber()
|
|
kArg := args[1].AsNumber()
|
|
if nArg.Type != ResultTypeNumber || kArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("COMBINA() requires numeric arguments")
|
|
}
|
|
n := math.Trunc(nArg.ValueNumber)
|
|
k := math.Trunc(kArg.ValueNumber)
|
|
if n < k {
|
|
return MakeErrorResult("COMBINA() requires n > k")
|
|
}
|
|
if n == 0 {
|
|
return MakeNumberResult(0)
|
|
}
|
|
args[0] = MakeNumberResult(n + k - 1)
|
|
args[1] = MakeNumberResult(n - 1)
|
|
return Combin(args)
|
|
}
|
|
|
|
// Decimal is an implementation of the Excel function DECIMAL() that parses a string
|
|
// in a given base and returns the numeric result.
|
|
func Decimal(args []Result) Result {
|
|
if len(args) != 2 {
|
|
return MakeErrorResult("DECIMAL() requires two arguments")
|
|
}
|
|
sArg := args[0].AsString()
|
|
if sArg.Type != ResultTypeString {
|
|
return MakeErrorResult("DECIMAL() requires string first argument")
|
|
}
|
|
baseArg := args[1].AsNumber()
|
|
if baseArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("DECIMAL() requires number second argument")
|
|
}
|
|
|
|
sv := sArg.ValueString
|
|
if len(sv) > 2 && (strings.HasPrefix(sv, "0x") || strings.HasPrefix(sv, "0X")) {
|
|
sv = sv[2:]
|
|
}
|
|
i, err := strconv.ParseInt(sv, int(baseArg.ValueNumber), 64)
|
|
if err != nil {
|
|
return MakeErrorResult("DECIMAL() error in conversion")
|
|
}
|
|
return MakeNumberResult(float64(i))
|
|
}
|
|
|
|
// Degrees is an implementation of the Excel function DEGREES() that converts
|
|
// radians to degrees.
|
|
func Degrees(args []Result) Result {
|
|
if len(args) != 1 {
|
|
return MakeErrorResult("DEGREES() requires one argument")
|
|
}
|
|
vArg := args[0].AsNumber()
|
|
if vArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("DEGREES() requires number argument")
|
|
}
|
|
|
|
return MakeNumberResult(180.0 / math.Pi * vArg.ValueNumber)
|
|
}
|
|
|
|
// Even is an implementation of the Excel EVEN() that rounds a number to the
|
|
// nearest even integer.
|
|
func Even(args []Result) Result {
|
|
if len(args) != 1 {
|
|
return MakeErrorResult("EVEN() requires one argument")
|
|
}
|
|
vArg := args[0].AsNumber()
|
|
if vArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("EVEN() requires number argument")
|
|
}
|
|
|
|
sign := math.Signbit(vArg.ValueNumber)
|
|
m, r := math.Modf(vArg.ValueNumber / 2)
|
|
v := m * 2
|
|
if r != 0 {
|
|
if !sign {
|
|
v += 2
|
|
} else {
|
|
v -= 2
|
|
}
|
|
}
|
|
return MakeNumberResult(v)
|
|
}
|
|
|
|
func fact(f float64) float64 {
|
|
res := float64(1)
|
|
for i := float64(2); i <= f; i++ {
|
|
res *= i
|
|
}
|
|
return res
|
|
}
|
|
|
|
// Fact is an implementation of the excel FACT function which returns the
|
|
// factorial of a positive numeric input.
|
|
func Fact(args []Result) Result {
|
|
if len(args) != 1 {
|
|
return MakeErrorResult("FACT() accepts a single numeric argument")
|
|
}
|
|
vArg := args[0].AsNumber()
|
|
if vArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("FACT() accepts a single numeric argument")
|
|
}
|
|
if vArg.ValueNumber < 0 {
|
|
return MakeErrorResult("FACT() accepts only positive arguments")
|
|
}
|
|
return MakeNumberResult(fact(vArg.ValueNumber))
|
|
}
|
|
|
|
// FactDouble is an implementation of the excel FACTDOUBLE function which
|
|
// returns the double factorial of a positive numeric input.
|
|
func FactDouble(args []Result) Result {
|
|
if len(args) != 1 {
|
|
return MakeErrorResult("FACTDOUBLE() accepts a single numeric argument")
|
|
}
|
|
vArg := args[0].AsNumber()
|
|
if vArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("FACTDOUBLE() accepts a single numeric argument")
|
|
}
|
|
if vArg.ValueNumber < 0 {
|
|
return MakeErrorResult("FACTDOUBLE() accepts only positive arguments")
|
|
}
|
|
|
|
res := float64(1)
|
|
v := math.Trunc(vArg.ValueNumber)
|
|
for i := v; i > 1; i -= 2 {
|
|
res *= i
|
|
}
|
|
return MakeNumberResult(res)
|
|
}
|
|
|
|
// FloorMath implements _xlfn.FLOOR.MATH which rounds numbers down to the
|
|
// nearest multiple of the second argument, toward or away from zero as
|
|
// specified by the third argument.
|
|
func FloorMath(args []Result) Result {
|
|
if len(args) == 0 {
|
|
return MakeErrorResult("FLOOR.MATH() requires at least one argument")
|
|
}
|
|
if len(args) > 3 {
|
|
return MakeErrorResult("FLOOR.MATH() allows at most three arguments")
|
|
}
|
|
// number to round
|
|
number := args[0].AsNumber()
|
|
if number.Type != ResultTypeNumber {
|
|
return MakeErrorResult("first argument to FLOOR.MATH() must be a number")
|
|
}
|
|
|
|
// significance
|
|
significance := float64(1)
|
|
if number.ValueNumber < 0 {
|
|
significance = -1
|
|
}
|
|
if len(args) > 1 {
|
|
sigArg := args[1].AsNumber()
|
|
if sigArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("second argument to FLOOR.MATH() must be a number")
|
|
}
|
|
significance = sigArg.ValueNumber
|
|
}
|
|
|
|
// round direction
|
|
direction := float64(1)
|
|
if len(args) > 2 {
|
|
dirArg := args[2].AsNumber()
|
|
if dirArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("third argument to FLOOR.MATH() must be a number")
|
|
}
|
|
direction = dirArg.ValueNumber
|
|
}
|
|
|
|
if len(args) == 1 {
|
|
return MakeNumberResult(math.Floor(number.ValueNumber))
|
|
}
|
|
|
|
v := number.ValueNumber
|
|
v, res := math.Modf(v / significance)
|
|
if res != 0 && number.ValueNumber < 0 && direction > 0 {
|
|
v++
|
|
}
|
|
return MakeNumberResult(v * significance)
|
|
}
|
|
|
|
// FloorPrecise is an implementation of the FlOOR.PRECISE function.
|
|
func FloorPrecise(args []Result) Result {
|
|
if len(args) == 0 {
|
|
return MakeErrorResult("FLOOR.PRECISE() requires at least one argument")
|
|
}
|
|
if len(args) > 2 {
|
|
return MakeErrorResult("FLOOR.PRECISE() allows at most two arguments")
|
|
}
|
|
// number to round
|
|
number := args[0].AsNumber()
|
|
if number.Type != ResultTypeNumber {
|
|
return MakeErrorResult("first argument to FLOOR.PRECISE() must be a number")
|
|
}
|
|
|
|
// significance
|
|
significance := float64(1)
|
|
if number.ValueNumber < 0 {
|
|
significance = -1
|
|
}
|
|
if len(args) > 1 {
|
|
sigArg := args[1].AsNumber()
|
|
if sigArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("second argument to FLOOR.MATH() must be a number")
|
|
}
|
|
// don't care about sign of significance
|
|
significance = math.Abs(sigArg.ValueNumber)
|
|
}
|
|
|
|
if len(args) == 1 {
|
|
return MakeNumberResult(math.Floor(number.ValueNumber))
|
|
}
|
|
|
|
v := number.ValueNumber
|
|
v, res := math.Modf(v / significance)
|
|
if res != 0 {
|
|
if number.ValueNumber < 0 {
|
|
v--
|
|
}
|
|
}
|
|
return MakeNumberResult(v * significance)
|
|
}
|
|
|
|
func gcd(a, b float64) float64 {
|
|
a = math.Trunc(a)
|
|
b = math.Trunc(b)
|
|
if a == 0 {
|
|
return b
|
|
}
|
|
if b == 0 {
|
|
return a
|
|
}
|
|
for a != b {
|
|
if a > b {
|
|
a = a - b
|
|
} else {
|
|
b = b - a
|
|
}
|
|
}
|
|
return a
|
|
}
|
|
|
|
// GCD implements the Excel GCD() function which returns the greatest common
|
|
// divisor of a range of numbers.
|
|
func GCD(args []Result) Result {
|
|
if len(args) == 0 {
|
|
return MakeErrorResult("GCD() requires at least one argument")
|
|
}
|
|
|
|
numbers := []float64{}
|
|
for _, arg := range args {
|
|
switch arg.Type {
|
|
case ResultTypeString:
|
|
na := arg.AsNumber()
|
|
if na.Type != ResultTypeNumber {
|
|
return MakeErrorResult("GCD() only accepts numeric arguments")
|
|
}
|
|
numbers = append(numbers, na.ValueNumber)
|
|
case ResultTypeList:
|
|
res := GCD(arg.ValueList)
|
|
if res.Type != ResultTypeNumber {
|
|
return res
|
|
}
|
|
numbers = append(numbers, res.ValueNumber)
|
|
case ResultTypeNumber:
|
|
numbers = append(numbers, arg.ValueNumber)
|
|
case ResultTypeError:
|
|
return arg
|
|
}
|
|
}
|
|
if numbers[0] < 0 {
|
|
return MakeErrorResult("GCD() only accepts positive arguments")
|
|
}
|
|
|
|
if len(numbers) == 1 {
|
|
return MakeNumberResult(numbers[0])
|
|
}
|
|
res := numbers[0]
|
|
for i := 1; i < len(numbers); i++ {
|
|
if numbers[i] < 0 {
|
|
return MakeErrorResult("GCD() only accepts positive arguments")
|
|
}
|
|
res = gcd(res, numbers[i])
|
|
}
|
|
return MakeNumberResult(res)
|
|
}
|
|
|
|
func lcm(a, b float64) float64 {
|
|
a = math.Trunc(a)
|
|
b = math.Trunc(b)
|
|
if a == 0 && b == 0 {
|
|
return 0
|
|
}
|
|
return a * b / gcd(a, b)
|
|
}
|
|
|
|
// LCM implements the Excel LCM() function which returns the least common
|
|
// multiple of a range of numbers.
|
|
func LCM(args []Result) Result {
|
|
if len(args) == 0 {
|
|
return MakeErrorResult("LCM() requires at least one argument")
|
|
}
|
|
|
|
numbers := []float64{}
|
|
for _, arg := range args {
|
|
switch arg.Type {
|
|
case ResultTypeString:
|
|
na := arg.AsNumber()
|
|
if na.Type != ResultTypeNumber {
|
|
return MakeErrorResult("LCM() only accepts numeric arguments")
|
|
}
|
|
numbers = append(numbers, na.ValueNumber)
|
|
case ResultTypeList:
|
|
res := LCM(arg.ValueList)
|
|
if res.Type != ResultTypeNumber {
|
|
return res
|
|
}
|
|
numbers = append(numbers, res.ValueNumber)
|
|
case ResultTypeNumber:
|
|
numbers = append(numbers, arg.ValueNumber)
|
|
case ResultTypeError:
|
|
return arg
|
|
}
|
|
}
|
|
if numbers[0] < 0 {
|
|
return MakeErrorResult("LCM() only accepts positive arguments")
|
|
}
|
|
|
|
if len(numbers) == 1 {
|
|
return MakeNumberResult(numbers[0])
|
|
}
|
|
res := numbers[0]
|
|
for i := 1; i < len(numbers); i++ {
|
|
if numbers[i] < 0 {
|
|
return MakeErrorResult("LCM() only accepts positive arguments")
|
|
}
|
|
res = lcm(res, numbers[i])
|
|
}
|
|
return MakeNumberResult(res)
|
|
}
|
|
|
|
// Int is an implementation of the Excel INT() function that rounds a number
|
|
// down to an integer.
|
|
func Int(args []Result) Result {
|
|
if len(args) != 1 {
|
|
return MakeErrorResult("INT() requires a single numeric argument")
|
|
}
|
|
nArg := args[0].AsNumber()
|
|
if nArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("INT() requires a single numeric argument")
|
|
}
|
|
trunc, rem := math.Modf(nArg.ValueNumber)
|
|
if rem < 0 {
|
|
trunc--
|
|
}
|
|
return MakeNumberResult(trunc)
|
|
}
|
|
|
|
// Log implements the Excel LOG function which returns the log of a number. By
|
|
// default the result is base 10, however the second argument to the function
|
|
// can specify a different base.
|
|
func Log(args []Result) Result {
|
|
if len(args) == 0 {
|
|
return MakeErrorResult("LOG() requires at least one numeric argument")
|
|
}
|
|
if len(args) > 2 {
|
|
return MakeErrorResult("LOG() accepts a maximum of two arguments")
|
|
}
|
|
nArg := args[0].AsNumber()
|
|
if nArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("LOG() requires at least one numeric argument")
|
|
}
|
|
base := 10.0
|
|
if len(args) > 1 {
|
|
bArg := args[1].AsNumber()
|
|
if bArg.Type != ResultTypeNumber {
|
|
return MakeErrorResult("LOG() requires second argument to be numeric")
|
|
}
|
|
base = args[1].ValueNumber
|
|
}
|
|
if nArg.ValueNumber == 0 {
|
|
return MakeErrorResult("LOG() requires first argument to be non-zero")
|
|
}
|
|
if base == 0 {
|
|
return MakeErrorResult("LOG() requires second argument to be non-zero")
|
|
}
|
|
|
|
return MakeNumberResult(math.Log(nArg.ValueNumber) / math.Log(base))
|
|
|
|
}
|
|
|
|
// Pi is an implementation of the Excel Pi() function that just returns the Pi
|
|
// constant.
|
|
func Pi(args []Result) Result {
|
|
if len(args) != 0 {
|
|
return MakeErrorResult("PI() accepts no arguments")
|
|
}
|
|
return MakeNumberResult(math.Pi)
|
|
}
|