1
0
mirror of https://github.com/hybridgroup/gobot.git synced 2025-04-29 13:49:14 +08:00
hybridgroup.gobot/drivers/i2c/pcf8583_driver_test.go

614 lines
18 KiB
Go

package i2c
import (
"strings"
"testing"
"time"
"github.com/stretchr/testify/assert"
"gobot.io/x/gobot/v2"
)
// this ensures that the implementation is based on i2c.Driver, which implements the gobot.Driver
// and tests all implementations, so no further tests needed here for gobot.Driver interface
var _ gobot.Driver = (*PCF8583Driver)(nil)
func initTestPCF8583WithStubbedAdaptor() (*PCF8583Driver, *i2cTestAdaptor) {
a := newI2cTestAdaptor()
d := NewPCF8583Driver(a)
_ = d.Start()
return d, a
}
func TestNewPCF8583Driver(t *testing.T) {
var di interface{} = NewPCF8583Driver(newI2cTestAdaptor())
d, ok := di.(*PCF8583Driver)
if !ok {
t.Errorf("NewPCF8583Driver() should have returned a *PCF8583Driver")
}
assert.NotNil(t, d.Driver)
assert.True(t, strings.HasPrefix(d.name, "PCF8583"))
assert.Equal(t, 0x50, d.defaultAddress)
assert.Equal(t, PCF8583Control(0x00), d.mode)
assert.Equal(t, 0, d.yearOffset)
assert.Equal(t, uint8(0x10), d.ramOffset)
}
func TestPCF8583Options(t *testing.T) {
// This is a general test, that options are applied in constructor by using the common WithBus() option and
// least one of this driver. Further tests for options can also be done by call of "WithOption(val)(d)".
d := NewPCF8583Driver(newI2cTestAdaptor(), WithBus(2), WithPCF8583Mode(PCF8583CtrlModeClock50))
assert.Equal(t, 2, d.GetBusOrDefault(1))
assert.Equal(t, PCF8583CtrlModeClock50, d.mode)
}
func TestPCF8583CommandsWriteTime(t *testing.T) {
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
readCtrlState := uint8(0x10) // clock 50Hz
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
b[len(b)-1] = readCtrlState
return len(b), nil
}
// act
result := d.Command("WriteTime")(map[string]interface{}{"val": time.Now()})
// assert
assert.Nil(t, result.(map[string]interface{})["err"])
}
func TestPCF8583CommandsReadTime(t *testing.T) {
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
d.yearOffset = 2019
milliSec := 550 * time.Millisecond // 0.55 sec = 550 ms
want := time.Date(2021, time.December, 24, 18, 00, 00, int(milliSec), time.UTC)
reg0Val := uint8(0x00) // clock mode 32.768 kHz
reg1Val := uint8(0x55) // BCD: 1/10 and 1/100 sec (55)
reg2Val := uint8(0x00) // BCD: 10 and 1 sec (00)
reg3Val := uint8(0x00) // BCD: 10 and 1 min (00)
reg4Val := uint8(0x18) // BCD: 10 and 1 hour (18)
reg5Val := uint8(0xA4) // year (2) and BCD: date (24)
reg6Val := uint8(0xB2) // weekday 5, bit 5 and bit 7 (0xA0) and BCD: month (0x12)
returnRead := [2][]uint8{
{reg0Val},
{reg1Val, reg2Val, reg3Val, reg4Val, reg5Val, reg6Val},
}
// arrange reads
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
rr := returnRead[numCallsRead-1]
for i := 0; i < len(b); i++ {
b[i] = rr[i]
}
return len(b), nil
}
// act
result := d.Command("ReadTime")(map[string]interface{}{})
// assert
assert.Nil(t, result.(map[string]interface{})["err"])
assert.Equal(t, want, result.(map[string]interface{})["val"])
}
func TestPCF8583CommandsWriteCounter(t *testing.T) {
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
readCtrlState := uint8(0x20) // counter
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
b[len(b)-1] = readCtrlState
return len(b), nil
}
// act
result := d.Command("WriteCounter")(map[string]interface{}{"val": int32(123456)})
// assert
assert.Nil(t, result.(map[string]interface{})["err"])
}
func TestPCF8583CommandsReadCounter(t *testing.T) {
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
want := int32(123456)
reg0Val := uint8(0x20) // counter mode
reg1Val := uint8(0x56) // BCD: 56
reg2Val := uint8(0x34) // BCD: 34
reg3Val := uint8(0x12) // BCD: 12
returnRead := [2][]uint8{
{reg0Val},
{reg1Val, reg2Val, reg3Val},
}
// arrange reads
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
rr := returnRead[numCallsRead-1]
for i := 0; i < len(b); i++ {
b[i] = rr[i]
}
return len(b), nil
}
// act
result := d.Command("ReadCounter")(map[string]interface{}{})
// assert
assert.Nil(t, result.(map[string]interface{})["err"])
assert.Equal(t, want, result.(map[string]interface{})["val"])
}
func TestPCF8583CommandsWriteRAM(t *testing.T) {
// arrange
d, _ := initTestPCF8583WithStubbedAdaptor()
var addressValue = map[string]interface{}{
"address": uint8(0x12),
"val": uint8(0x45),
}
// act
result := d.Command("WriteRAM")(addressValue)
// assert
assert.Nil(t, result.(map[string]interface{})["err"])
}
func TestPCF8583CommandsReadRAM(t *testing.T) {
// arrange
d, _ := initTestPCF8583WithStubbedAdaptor()
var address = map[string]interface{}{
"address": uint8(0x34),
}
// act
result := d.Command("ReadRAM")(address)
// assert
assert.Nil(t, result.(map[string]interface{})["err"])
assert.Equal(t, uint8(0), result.(map[string]interface{})["val"])
}
func TestPCF8583WriteTime(t *testing.T) {
// sequence to write the time:
// * read control register for get current state and ensure an clock mode is set
// * write the control register (stop counting)
// * create the values for date registers (default is 24h mode)
// * write the clock and calendar registers with auto increment
// * write the control register (start counting)
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
a.written = []byte{} // reset writes of Start() and former test
readCtrlState := uint8(0x07) // 32.768kHz clock mode
milliSec := 210 * time.Millisecond // 0.21 sec = 210 ms
initDate := time.Date(2022, time.December, 16, 15, 14, 13, int(milliSec), time.UTC)
wantCtrlStop := uint8(0x87) // stop counting bit is set
wantReg1Val := uint8(0x21) // BCD: 1/10 and 1/100 sec (21)
wantReg2Val := uint8(0x13) // BCD: 10 and 1 sec (13)
wantReg3Val := uint8(0x14) // BCD: 10 and 1 min (14)
wantReg4Val := uint8(0x15) // BCD: 10 and 1 hour (15)
wantReg5Val := uint8(0x16) // year (0) and BCD: date (16)
wantReg6Val := uint8(0xB2) // weekday 5, bit 5 and bit 7 (0xA0) and BCD: month (0x12)
wantCrtlStart := uint8(0x07) // stop counting bit is reset
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
b[len(b)-1] = readCtrlState
return len(b), nil
}
// act
err := d.WriteTime(initDate)
// assert
assert.Nil(t, err)
assert.Equal(t, initDate.Year(), d.yearOffset)
assert.Equal(t, 1, numCallsRead)
assert.Equal(t, 11, len(a.written))
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[0])
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[1])
assert.Equal(t, wantCtrlStop, a.written[2])
assert.Equal(t, wantReg1Val, a.written[3])
assert.Equal(t, wantReg2Val, a.written[4])
assert.Equal(t, wantReg3Val, a.written[5])
assert.Equal(t, wantReg4Val, a.written[6])
assert.Equal(t, wantReg5Val, a.written[7])
assert.Equal(t, wantReg6Val, a.written[8])
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[9])
assert.Equal(t, wantCrtlStart, a.written[10])
}
func TestPCF8583WriteTimeNoTimeModeFails(t *testing.T) {
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
a.written = []byte{} // reset writes of Start() and former test
readCtrlState := uint8(0x30) // test mode
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
b[len(b)-1] = readCtrlState
return len(b), nil
}
// act
err := d.WriteTime(time.Now())
// assert
assert.NotNil(t, err)
assert.Contains(t, err.Error(), "wrong mode 0x30")
assert.Equal(t, 1, len(a.written))
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[0])
assert.Equal(t, 1, numCallsRead)
}
func TestPCF8583ReadTime(t *testing.T) {
// sequence to read the time:
// * read the control register to determine mask flag and ensure an clock mode is set
// * read the clock and calendar registers with auto increment
// * create the value out of registers content
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
a.written = []byte{} // reset writes of Start() and former test
d.yearOffset = 2020
milliSec := 210 * time.Millisecond // 0.21 sec = 210 ms
want := time.Date(2022, time.December, 16, 15, 14, 13, int(milliSec), time.UTC)
reg0Val := uint8(0x10) // clock mode 50Hz
reg1Val := uint8(0x21) // BCD: 1/10 and 1/100 sec (21)
reg2Val := uint8(0x13) // BCD: 10 and 1 sec (13)
reg3Val := uint8(0x14) // BCD: 10 and 1 min (14)
reg4Val := uint8(0x15) // BCD: 10 and 1 hour (15)
reg5Val := uint8(0x96) // year (2) and BCD: date (16)
reg6Val := uint8(0xB2) // weekday 5, bit 5 and bit 7 (0xA0) and BCD: month (0x12)
returnRead := [2][]uint8{
{reg0Val},
{reg1Val, reg2Val, reg3Val, reg4Val, reg5Val, reg6Val},
}
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
rr := returnRead[numCallsRead-1]
for i := 0; i < len(b); i++ {
b[i] = rr[i]
}
return len(b), nil
}
// act
got, err := d.ReadTime()
// assert
assert.Nil(t, err)
assert.Equal(t, 1, len(a.written))
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[0])
assert.Equal(t, 2, numCallsRead)
assert.Equal(t, want, got)
}
func TestPCF8583ReadTimeNoTimeModeFails(t *testing.T) {
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
a.written = []byte{} // reset writes of Start() and former test
readCtrlState := uint8(0x20) // counter mode
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
b[len(b)-1] = readCtrlState
return len(b), nil
}
// act
got, err := d.ReadTime()
// assert
assert.NotNil(t, err)
assert.Contains(t, err.Error(), "wrong mode 0x20")
assert.Equal(t, time.Time{}, got)
assert.Equal(t, 1, len(a.written))
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[0])
assert.Equal(t, 1, numCallsRead)
}
func TestPCF8583WriteCounter(t *testing.T) {
// sequence to write the counter:
// * read control register for get current state and ensure the event counter mode is set
// * write the control register (stop counting)
// * create the values for counter registers
// * write the counter registers
// * write the control register (start counting)
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
a.written = []byte{} // reset writes of Start() and former test
readCtrlState := uint8(0x27) // counter mode
initCount := int32(654321) // 6 digits used of 10 possible with int32
wantCtrlStop := uint8(0xA7) // stop counting bit is set
wantReg1Val := uint8(0x21) // BCD: 21
wantReg2Val := uint8(0x43) // BCD: 43
wantReg3Val := uint8(0x65) // BCD: 65
wantCtrlStart := uint8(0x27) // counter mode
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
b[len(b)-1] = readCtrlState
return len(b), nil
}
// act
err := d.WriteCounter(initCount)
// assert
assert.Nil(t, err)
assert.Equal(t, 1, numCallsRead)
assert.Equal(t, 8, len(a.written))
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[0])
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[1])
assert.Equal(t, wantCtrlStop, a.written[2])
assert.Equal(t, wantReg1Val, a.written[3])
assert.Equal(t, wantReg2Val, a.written[4])
assert.Equal(t, wantReg3Val, a.written[5])
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[6])
assert.Equal(t, wantCtrlStart, a.written[7])
}
func TestPCF8583WriteCounterNoCounterModeFails(t *testing.T) {
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
a.written = []byte{} // reset writes of Start() and former test
readCtrlState := uint8(0x10) // 50Hz mode
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
b[len(b)-1] = readCtrlState
return len(b), nil
}
// act
err := d.WriteCounter(123)
// assert
assert.NotNil(t, err)
assert.Contains(t, err.Error(), "wrong mode 0x10")
assert.Equal(t, 1, len(a.written))
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[0])
assert.Equal(t, 1, numCallsRead)
}
func TestPCF8583ReadCounter(t *testing.T) {
// sequence to read the counter:
// * read the control register to ensure the event counter mode is set
// * read the counter registers
// * create the value out of registers content
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
a.written = []byte{} // reset writes of Start() and former test
want := int32(654321)
reg0Val := uint8(0x20) // counter mode
reg1Val := uint8(0x21) // BCD: 21
reg2Val := uint8(0x43) // BCD: 43
reg3Val := uint8(0x65) // BCD: 65
returnRead := [2][]uint8{
{reg0Val},
{reg1Val, reg2Val, reg3Val},
}
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
rr := returnRead[numCallsRead-1]
for i := 0; i < len(b); i++ {
b[i] = rr[i]
}
return len(b), nil
}
// act
got, err := d.ReadCounter()
// assert
assert.Nil(t, err)
assert.Equal(t, 1, len(a.written))
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[0])
assert.Equal(t, 2, numCallsRead)
assert.Equal(t, want, got)
}
func TestPCF8583ReadCounterNoCounterModeFails(t *testing.T) {
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
a.written = []byte{} // reset writes of Start() and former test
readCtrlState := uint8(0x30) // test mode
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
b[len(b)-1] = readCtrlState
return len(b), nil
}
// act
got, err := d.ReadCounter()
// assert
assert.NotNil(t, err)
assert.Contains(t, err.Error(), "wrong mode 0x30")
assert.Equal(t, int32(0), got)
assert.Equal(t, 1, len(a.written))
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[0])
assert.Equal(t, 1, numCallsRead)
}
func TestPCF8583WriteRam(t *testing.T) {
// sequence to write the RAM:
// * calculate the RAM address and check for valid range
// * write the given value to the given RAM address
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
a.written = []byte{} // reset writes of Start() and former test
wantRAMAddress := uint8(0xFF)
wantRAMValue := uint8(0xEF)
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// act
err := d.WriteRAM(wantRAMAddress-pcf8583RamOffset, wantRAMValue)
// assert
assert.Nil(t, err)
assert.Equal(t, 2, len(a.written))
assert.Equal(t, wantRAMAddress, a.written[0])
assert.Equal(t, wantRAMValue, a.written[1])
}
func TestPCF8583WriteRamAddressOverflowFails(t *testing.T) {
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
a.written = []byte{} // reset writes of Start() and former test
// act
err := d.WriteRAM(uint8(0xF0), 15)
// assert
assert.NotNil(t, err)
assert.Contains(t, err.Error(), "overflow 256")
assert.Equal(t, 0, len(a.written))
}
func TestPCF8583ReadRam(t *testing.T) {
// sequence to read the RAM:
// * calculate the RAM address and check for valid range
// * read the value from the given RAM address
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
a.written = []byte{} // reset writes of Start() and former test
wantRAMAddress := uint8(pcf8583RamOffset)
want := uint8(0xAB)
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
b[len(b)-1] = want
return len(b), nil
}
// act
got, err := d.ReadRAM(wantRAMAddress - pcf8583RamOffset)
// assert
assert.Nil(t, err)
assert.Equal(t, want, got)
assert.Equal(t, 1, len(a.written))
assert.Equal(t, wantRAMAddress, a.written[0])
assert.Equal(t, 1, numCallsRead)
}
func TestPCF8583ReadRamAddressOverflowFails(t *testing.T) {
// arrange
d, a := initTestPCF8583WithStubbedAdaptor()
a.written = []byte{} // reset writes of Start() and former test
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
return len(b), nil
}
// act
got, err := d.ReadRAM(uint8(0xF0))
// assert
assert.NotNil(t, err)
assert.Contains(t, err.Error(), "overflow 256")
assert.Equal(t, uint8(0), got)
assert.Equal(t, 0, len(a.written))
assert.Equal(t, 0, numCallsRead)
}
func TestPCF8583_initializeNoModeSwitch(t *testing.T) {
// arrange
a := newI2cTestAdaptor()
d := NewPCF8583Driver(a)
a.written = []byte{} // reset writes of former tests
readCtrlState := uint8(0x01) // 32.768kHz clock mode
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
b[len(b)-1] = readCtrlState
return len(b), nil
}
// act, assert - initialize() must be called on Start()
err := d.Start()
// assert
assert.Nil(t, err)
assert.Equal(t, 1, numCallsRead)
assert.Equal(t, 1, len(a.written))
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[0])
}
func TestPCF8583_initializeWithModeSwitch(t *testing.T) {
// sequence to change mode:
// * read control register for get current state
// * reset old mode bits and set new mode bit
// * write the control register
// arrange
a := newI2cTestAdaptor()
d := NewPCF8583Driver(a)
d.mode = PCF8583CtrlModeCounter
a.written = []byte{} // reset writes of former tests
readCtrlState := uint8(0x02) // 32.768kHz clock mode
wantReg0Val := uint8(0x22) // event counter mode
// arrange writes
a.i2cWriteImpl = func(b []byte) (int, error) {
return len(b), nil
}
// arrange reads
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
b[len(b)-1] = readCtrlState
return len(b), nil
}
// act, assert - initialize() must be called on Start()
err := d.Start()
// assert
assert.Nil(t, err)
assert.Equal(t, 1, numCallsRead)
assert.Equal(t, 3, len(a.written))
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[0])
assert.Equal(t, uint8(pcf8583Reg_CTRL), a.written[1])
assert.Equal(t, uint8(wantReg0Val), a.written[2])
}