package i2c import ( "bytes" "encoding/binary" "fmt" "math" "gobot.io/x/gobot" ) const ( bmp388ChipID = 0x50 bmp388RegisterChipID = 0x00 bmp388RegisterStatus = 0x03 bmp388RegisterConfig = 0x1F bmp388RegisterPressureData = 0x04 bmp388RegisterTempData = 0x07 bmp388RegisterCalib00 = 0x31 bmp388RegisterCMD = 0x7E // CMD : 0x00 nop (reserved. No command.) // : 0x34 extmode_en_middle // : 0xB0 fifo_flush (Clears all data in the FIFO, does not change FIFO_CONFIG registers) // : 0xB6 softreset (Triggers a reset, all user configuration settings are overwritten with their default state) bmp388RegisterODR = 0x1D // Output Data Rates bmp388RegisterOSR = 0x1C // Oversampling Rates bmp388RegisterPWRCTRL = 0x1B bmp388PWRCTRLSleep = 0 bmp388PWRCTRLForced = 1 bmp388PWRCTRLNormal = 3 bmp388SeaLevelPressure = 1013.25 // IIR filter coefficients bmp388IIRFIlterCoef0 = 0 // bypass-mode bmp388IIRFIlterCoef1 = 1 bmp388IIRFIlterCoef3 = 2 bmp388IIRFIlterCoef7 = 3 bmp388IIRFIlterCoef15 = 4 bmp388IIRFIlterCoef31 = 5 bmp388IIRFIlterCoef63 = 6 bmp388IIRFIlterCoef127 = 7 ) // BMP388Accuracy accuracy type type BMP388Accuracy uint8 // BMP388Accuracy accuracy modes const ( BMP388AccuracyUltraLow BMP388Accuracy = 0 // x1 sample BMP388AccuracyLow BMP388Accuracy = 1 // x2 samples BMP388AccuracyStandard BMP388Accuracy = 2 // x4 samples BMP388AccuracyHigh BMP388Accuracy = 3 // x8 samples BMP388AccuracyUltraHigh BMP388Accuracy = 4 // x16 samples BMP388AccuracyHighest BMP388Accuracy = 5 // x32 samples ) type bmp388CalibrationCoefficients struct { t1 float32 t2 float32 t3 float32 p1 float32 p2 float32 p3 float32 p4 float32 p5 float32 p6 float32 p7 float32 p8 float32 p9 float32 p10 float32 p11 float32 } // BMP388Driver is a driver for the BMP388 temperature/pressure sensor type BMP388Driver struct { name string connector Connector connection Connection Config tpc *bmp388CalibrationCoefficients } // NewBMP388Driver creates a new driver with specified i2c interface. // Params: // conn Connector - the Adaptor to use with this Driver // // Optional params: // i2c.WithBus(int): bus to use with this driver // i2c.WithAddress(int): address to use with this driver // func NewBMP388Driver(c Connector, options ...func(Config)) *BMP388Driver { b := &BMP388Driver{ name: gobot.DefaultName("BMP388"), connector: c, Config: NewConfig(), tpc: &bmp388CalibrationCoefficients{}, } for _, option := range options { option(b) } // TODO: expose commands to API return b } // Name returns the name of the device. func (d *BMP388Driver) Name() string { return d.name } // SetName sets the name of the device. func (d *BMP388Driver) SetName(n string) { d.name = n } // Connection returns the connection of the device. func (d *BMP388Driver) Connection() gobot.Connection { return d.connector.(gobot.Connection) } // Start initializes the BMP388 and loads the calibration coefficients. func (d *BMP388Driver) Start() (err error) { var chipID uint8 bus := d.GetBusOrDefault(d.connector.GetDefaultBus()) address := d.GetAddressOrDefault(bmp180Address) if d.connection, err = d.connector.GetConnection(address, bus); err != nil { return err } if chipID, err = d.connection.ReadByteData(bmp388RegisterChipID); err != nil { return err } if bmp388ChipID != chipID { return fmt.Errorf("Incorrect BMP388 chip ID '0%x' Expected 0x%x", chipID, bmp388ChipID) } if err := d.initialization(); err != nil { return err } return nil } // Halt halts the device. func (d *BMP388Driver) Halt() (err error) { return nil } // Temperature returns the current temperature, in celsius degrees. func (d *BMP388Driver) Temperature(accuracy BMP388Accuracy) (temp float32, err error) { var rawT int32 // Enable Pressure and Temperature measurement, set FORCED operating mode var mode byte = (bmp388PWRCTRLForced << 4) | 3 // 1100|1|1 == mode|T|P if err = d.connection.WriteByteData(bmp388RegisterPWRCTRL, mode); err != nil { return 0, err } // Set Accuracy for temperature if err = d.connection.WriteByteData(bmp388RegisterOSR, uint8(accuracy<<3)); err != nil { return 0, err } if rawT, err = d.rawTemp(); err != nil { return 0.0, err } temp = d.calculateTemp(rawT) return } // Pressure returns the current barometric pressure, in Pa func (d *BMP388Driver) Pressure(accuracy BMP388Accuracy) (press float32, err error) { var rawT, rawP int32 // Enable Pressure and Temperature measurement, set FORCED operating mode var mode byte = (bmp388PWRCTRLForced << 4) | 3 // 1100|1|1 == mode|T|P if err = d.connection.WriteByteData(bmp388RegisterPWRCTRL, mode); err != nil { return 0, err } // Set Standard Accuracy for pressure if err = d.connection.WriteByteData(bmp388RegisterOSR, uint8(accuracy)); err != nil { return 0, err } if rawT, err = d.rawTemp(); err != nil { return 0.0, err } if rawP, err = d.rawPressure(); err != nil { return 0.0, err } tLin := d.calculateTemp(rawT) return d.calculatePress(rawP, float64(tLin)), nil } // Altitude returns the current altitude in meters based on the // current barometric pressure and estimated pressure at sea level. // https://www.weather.gov/media/epz/wxcalc/pressureAltitude.pdf func (d *BMP388Driver) Altitude(accuracy BMP388Accuracy) (alt float32, err error) { atmP, _ := d.Pressure(accuracy) atmP /= 100.0 alt = float32(44307.0 * (1.0 - math.Pow(float64(atmP/bmp388SeaLevelPressure), 0.190284))) return } // initialization reads the calibration coefficients. func (d *BMP388Driver) initialization() (err error) { var ( coefficients []byte t1 uint16 t2 uint16 t3 int8 p1 int16 p2 int16 p3 int8 p4 int8 p5 uint16 p6 uint16 p7 int8 p8 int8 p9 int16 p10 int8 p11 int8 ) if coefficients, err = d.read(bmp388RegisterCalib00, 24); err != nil { return err } buf := bytes.NewBuffer(coefficients) binary.Read(buf, binary.LittleEndian, &t1) binary.Read(buf, binary.LittleEndian, &t2) binary.Read(buf, binary.LittleEndian, &t3) binary.Read(buf, binary.LittleEndian, &p1) binary.Read(buf, binary.LittleEndian, &p2) binary.Read(buf, binary.LittleEndian, &p3) binary.Read(buf, binary.LittleEndian, &p4) binary.Read(buf, binary.LittleEndian, &p5) binary.Read(buf, binary.LittleEndian, &p6) binary.Read(buf, binary.LittleEndian, &p7) binary.Read(buf, binary.LittleEndian, &p8) binary.Read(buf, binary.LittleEndian, &p9) binary.Read(buf, binary.LittleEndian, &p10) binary.Read(buf, binary.LittleEndian, &p11) d.tpc.t1 = float32(float64(t1) / math.Pow(2, -8)) d.tpc.t2 = float32(float64(t2) / math.Pow(2, 30)) d.tpc.t3 = float32(float64(t3) / math.Pow(2, 48)) d.tpc.p1 = float32((float64(p1) - math.Pow(2, 14)) / math.Pow(2, 20)) d.tpc.p2 = float32((float64(p2) - math.Pow(2, 14)) / math.Pow(2, 29)) d.tpc.p3 = float32(float64(p3) / math.Pow(2, 32)) d.tpc.p4 = float32(float64(p4) / math.Pow(2, 37)) d.tpc.p5 = float32(float64(p5) / math.Pow(2, -3)) d.tpc.p6 = float32(float64(p6) / math.Pow(2, 6)) d.tpc.p7 = float32(float64(p7) / math.Pow(2, 8)) d.tpc.p8 = float32(float64(p8) / math.Pow(2, 15)) d.tpc.p9 = float32(float64(p9) / math.Pow(2, 48)) d.tpc.p10 = float32(float64(p10) / math.Pow(2, 48)) d.tpc.p11 = float32(float64(p11) / math.Pow(2, 65)) // Perform a power on reset. All user configuration settings are overwritten // with their default state. if err = d.connection.WriteByteData(bmp388RegisterCMD, 0xB6); err != nil { return err } // set IIR filter to off if err = d.connection.WriteByteData(bmp388RegisterConfig, bmp388IIRFIlterCoef0<<1); err != nil { return err } return nil } func (d *BMP388Driver) rawTemp() (temp int32, err error) { var data []byte var tp0, tp1, tp2 byte if data, err = d.read(bmp388RegisterTempData, 3); err != nil { return 0, err } buf := bytes.NewBuffer(data) binary.Read(buf, binary.LittleEndian, &tp0) // XLSB binary.Read(buf, binary.LittleEndian, &tp1) // LSB binary.Read(buf, binary.LittleEndian, &tp2) // MSB temp = ((int32(tp2) << 16) | (int32(tp1) << 8) | int32(tp0)) return } func (d *BMP388Driver) rawPressure() (press int32, err error) { var data []byte var tp0, tp1, tp2 byte if data, err = d.read(bmp388RegisterPressureData, 3); err != nil { return 0, err } buf := bytes.NewBuffer(data) binary.Read(buf, binary.LittleEndian, &tp0) // XLSB binary.Read(buf, binary.LittleEndian, &tp1) // LSB binary.Read(buf, binary.LittleEndian, &tp2) // MSB press = ((int32(tp2) << 16) | (int32(tp1) << 8) | int32(tp0)) return } func (d *BMP388Driver) calculateTemp(rawTemp int32) float32 { // datasheet, sec 9.2 Temperature compensation pd1 := float32(rawTemp) - d.tpc.t1 pd2 := pd1 * d.tpc.t2 temperatureComp := pd2 + (pd1*pd1)*d.tpc.t3 return temperatureComp } func (d *BMP388Driver) calculatePress(rawPress int32, tLin float64) float32 { pd1 := float64(d.tpc.p6) * tLin pd2 := float64(d.tpc.p7) * math.Pow(tLin, 2) pd3 := float64(d.tpc.p8) * math.Pow(tLin, 3) po1 := float64(d.tpc.p5) + pd1 + pd2 + pd3 pd1 = float64(d.tpc.p2) * tLin pd2 = float64(d.tpc.p3) * math.Pow(tLin, 2) pd3 = float64(d.tpc.p4) * math.Pow(tLin, 3) po2 := float64(rawPress) * (float64(d.tpc.p1) + pd1 + pd2 + pd3) pd1 = math.Pow(float64(rawPress), 2) pd2 = float64(d.tpc.p9) + float64(d.tpc.p10)*tLin pd3 = pd1 * pd2 pd4 := pd3 + math.Pow(float64(rawPress), 3)*float64(d.tpc.p11) pressure := po1 + po2 + pd4 return float32(pressure) } func (d *BMP388Driver) read(address byte, n int) ([]byte, error) { if _, err := d.connection.Write([]byte{address}); err != nil { return nil, err } buf := make([]byte, n) bytesRead, err := d.connection.Read(buf) if bytesRead != n || err != nil { return nil, err } return buf, nil }