1
0
mirror of https://github.com/hybridgroup/gobot.git synced 2025-04-27 13:48:56 +08:00

ADXL345 use ReadBlockData()

This commit is contained in:
Thomas Kohler 2022-10-09 09:47:20 +02:00 committed by GitHub
commit be288943be
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 490 additions and 330 deletions

View File

@ -2,69 +2,79 @@ package i2c
import ( import (
"encoding/binary" "encoding/binary"
"log"
"github.com/pkg/errors" "github.com/pkg/errors"
"gobot.io/x/gobot"
) )
const ADXL345AddressLow = 0x53 const adxl345Debug = false
const ADXL345AddressHigh = 0x1D
// ADXL345 supports 2 addresses, which can be changed by the address pin, there is no internal pull-up/down resistor!
// pin to GND: 0x53, pin to VDD: 0x1D
const (
ADXL345AddressPullUp = 0x1D // can be used by WithAddress()
adxl345DefaultAddress = 0x53
)
type ADXL345RateConfig uint8
type ADXL345FsRangeConfig uint8
const ( const (
// Data rate // registers are named according to the datasheet
ADXL345_RATE_3200HZ = 0x0F // 3200 Hz adxl345Reg_DEVID = 0x00 // R, 11100101, Device ID
ADXL345_RATE_1600HZ = 0x0E // 1600 Hz adxl345Reg_THRESH_TAP = 0x1D // R/W, 00000000, Tap threshold
ADXL345_RATE_800HZ = 0x0D // 800 Hz adxl345Reg_OFSX = 0x1E // R/W, 00000000, X-axis offset
ADXL345_RATE_400HZ = 0x0C // 400 Hz adxl345Reg_OFSY = 0x1F // R/W, 00000000, Y-axis offset
ADXL345_RATE_200HZ = 0x0B // 200 Hz adxl345Reg_OFSZ = 0x20 // R/W, 00000000, Z-axis offset
ADXL345_RATE_100HZ = 0x0A // 100 Hz adxl345Reg_DUR = 0x21 // R/W, 00000000, Tap duration
ADXL345_RATE_50HZ = 0x09 // 50 Hz adxl345Reg_LATENT = 0x22 // R/W, 00000000, Tap latency
ADXL345_RATE_25HZ = 0x08 // 25 Hz adxl345Reg_WINDOW = 0x23 // R/W, 00000000, Tap window
ADXL345_RATE_12_5HZ = 0x07 // 12.5 Hz adxl345Reg_THRESH_ACT = 0x24 // R/W, 00000000, Activity threshold
ADXL345_RATE_6_25HZ = 0x06 // 6.25 Hz adxl345Reg_THRESH_INACT = 0x25 // R/W, 00000000, Inactivity threshold
ADXL345_RATE_3_13HZ = 0x05 // 3.13 Hz adxl345Reg_TIME_INACT = 0x26 // R/W, 00000000, Inactivity time
ADXL345_RATE_1_56HZ = 0x04 // 1.56 Hz adxl345Reg_ACT_INACT_CTL = 0x27 // R/W, 00000000, Axis enable control for activity and inactivity detection
ADXL345_RATE_0_78HZ = 0x03 // 0.78 Hz adxl345Reg_THRESH_FF = 0x28 // R/W, 00000000, Free-fall threshold
ADXL345_RATE_0_39HZ = 0x02 // 0.39 Hz adxl345Reg_TIME_FF = 0x29 // R/W, 00000000, Free-fall time
ADXL345_RATE_0_20HZ = 0x01 // 0.20 Hz adxl345Reg_TAP_AXES = 0x2A // R/W, 00000000, Axis control for single tap/double tap
ADXL345_RATE_0_10HZ = 0x00 // 0.10 Hz adxl345Reg_ACT_TAP_STATUS = 0x2B // R, 00000000, Source of single tap/double tap
adxl345Reg_BW_RATE = 0x2C // R/W, 00001010, Data rate and power mode control
adxl345Reg_POWER_CTL = 0x2D // R/W, 00000000, Power-saving features control
adxl345Reg_INT_ENABLE = 0x2E // R/W, 00000000, Interrupt enable control
adxl345Reg_INT_MAP = 0x2F // R/W, 00000000, Interrupt mapping control
adxl345Reg_INT_SOUCE = 0x30 // R, 00000010, Source of interrupts
adxl345Reg_DATA_FORMAT = 0x31 // R/W, 00000000, Data format control (FS range, justify, full resolution)
adxl345Reg_DATAX0 = 0x32 // R, 00000000, X-Axis Data 0 (LSByte)
adxl345Reg_DATAX1 = 0x33 // R, 00000000, X-Axis Data 1 (MSByte)
adxl345Reg_DATAY0 = 0x34 // R, 00000000, Y-Axis Data 0
adxl345Reg_DATAY1 = 0x35 // R, 00000000, Y-Axis Data 1
adxl345Reg_DATAZ0 = 0x36 // R, 00000000, Z-Axis Data 0
adxl345Reg_DATAZ1 = 0x37 // R, 00000000, Z-Axis Data 1
adxl345Reg_FIFO_CTL = 0x38 // R/W, 00000000, FIFO control
adxl345Reg_FIFO_STATUS = 0x39 // R, 00000000, FIFO status
// Data range adxl345Rate_LowPowerBit = 0x10 // set the device to low power, but increase the noise by ~2.5x
ADXL345_RANGE_2G = 0x00 // +-2 g
ADXL345_RANGE_4G = 0x01 // +-4 g
ADXL345_RANGE_8G = 0x02 // +-8 g
ADXL345_RANGE_16G = 0x03 // +-16 g)
ADXL345_REG_DEVID = 0x00 // R, 11100101, Device ID ADXL345Rate_100mHZ ADXL345RateConfig = 0x00 // 0.10 Hz
ADXL345_REG_THRESH_TAP = 0x1D // R/W, 00000000, Tap threshold ADXL345Rate_200mHZ ADXL345RateConfig = 0x01 // 0.20 Hz
ADXL345_REG_OFSX = 0x1E // R/W, 00000000, X-axis offset ADXL345Rate_390mHZ ADXL345RateConfig = 0x02 // 0.39 Hz
ADXL345_REG_OFSY = 0x1F // R/W, 00000000, Y-axis offset ADXL345Rate_780mHZ ADXL345RateConfig = 0x03 // 0.78 Hz
ADXL345_REG_OFSZ = 0x20 // R/W, 00000000, Z-axis offset ADXL345Rate_1560mHZ ADXL345RateConfig = 0x04 // 1.56 Hz
ADXL345_REG_DUR = 0x21 // R/W, 00000000, Tap duration ADXL345Rate_3130mHZ ADXL345RateConfig = 0x05 // 3.13 Hz
ADXL345_REG_LATENT = 0x22 // R/W, 00000000, Tap latency ADXL345Rate_6250mHZ ADXL345RateConfig = 0x06 // 6.25 Hz
ADXL345_REG_WINDOW = 0x23 // R/W, 00000000, Tap window ADXL345Rate_12500mHZ ADXL345RateConfig = 0x07 // 12.5 Hz
ADXL345_REG_THRESH_ACT = 0x24 // R/W, 00000000, Activity threshold ADXL345Rate_25HZ ADXL345RateConfig = 0x08 // 25 Hz
ADXL345_REG_THRESH_INACT = 0x25 // R/W, 00000000, Inactivity threshold ADXL345Rate_50HZ ADXL345RateConfig = 0x09 // 50 Hz
ADXL345_REG_TIME_INACT = 0x26 // R/W, 00000000, Inactivity time ADXL345Rate_100HZ ADXL345RateConfig = 0x0A // 100 Hz
ADXL345_REG_ACT_INACT_CTL = 0x27 // R/W, 00000000, Axis enable control for activity and inactiv ity detection ADXL345Rate_200HZ ADXL345RateConfig = 0x0B // 200 Hz
ADXL345_REG_THRESH_FF = 0x28 // R/W, 00000000, Free-fall threshold ADXL345Rate_400HZ ADXL345RateConfig = 0x0C // 400 Hz
ADXL345_REG_TIME_FF = 0x29 // R/W, 00000000, Free-fall time ADXL345Rate_800HZ ADXL345RateConfig = 0x0D // 800 Hz
ADXL345_REG_TAP_AXES = 0x2A // R/W, 00000000, Axis control for single tap/double tap ADXL345Rate_1600HZ ADXL345RateConfig = 0x0E // 1600 Hz
ADXL345_REG_ACT_TAP_STATUS = 0x2B // R, 00000000, Source of single tap/double tap ADXL345Rate_3200HZ ADXL345RateConfig = 0x0F // 3200 Hz
ADXL345_REG_BW_RATE = 0x2C // R/W, 00001010, Data rate and power mode control
ADXL345_REG_POWER_CTL = 0x2D // R/W, 00000000, Power-saving features control ADXL345FsRange_2G ADXL345FsRangeConfig = 0x00 // +-2 g
ADXL345_REG_INT_ENABLE = 0x2E // R/W, 00000000, Interrupt enable control ADXL345FsRange_4G ADXL345FsRangeConfig = 0x01 // +-4 g
ADXL345_REG_INT_MAP = 0x2F // R/W, 00000000, Interrupt mapping control ADXL345FsRange_8G ADXL345FsRangeConfig = 0x02 // +-8 g
ADXL345_REG_INT_SOUCE = 0x30 // R, 00000010, Source of interrupts ADXL345FsRange_16G ADXL345FsRangeConfig = 0x03 // +-16 g)
ADXL345_REG_DATA_FORMAT = 0x31 // R/W, 00000000, Data format control
ADXL345_REG_DATAX0 = 0x32 // R, 00000000, X-Axis Data 0
ADXL345_REG_DATAX1 = 0x33 // R, 00000000, X-Axis Data 1
ADXL345_REG_DATAY0 = 0x34 // R, 00000000, Y-Axis Data 0
ADXL345_REG_DATAY1 = 0x35 // R, 00000000, Y-Axis Data 1
ADXL345_REG_DATAZ0 = 0x36 // R, 00000000, Z-Axis Data 0
ADXL345_REG_DATAZ1 = 0x37 // R, 00000000, Z-Axis Data 1
ADXL345_REG_FIFO_CTL = 0x38 // R/W, 00000000, FIFO control
ADXL345_REG_FIFO_STATUS = 0x39 // R, 00000000, FIFO status
) )
// ADXL345Driver is the gobot driver for the digital accelerometer ADXL345 // ADXL345Driver is the gobot driver for the digital accelerometer ADXL345
@ -74,18 +84,10 @@ const (
// //
// Ported from the Arduino driver https://github.com/jakalada/Arduino-ADXL345 // Ported from the Arduino driver https://github.com/jakalada/Arduino-ADXL345
type ADXL345Driver struct { type ADXL345Driver struct {
name string *Driver
connector Connector
connection Connection
powerCtl adxl345PowerCtl powerCtl adxl345PowerCtl
dataFormat adxl345DataFormat dataFormat adxl345DataFormat
bwRate adxl345BwRate bwRate adxl345BwRate
x, y, z float64
rawX, rawY, rawZ int16
Config
} }
// Internal structure for the power configuration // Internal structure for the power configuration
@ -104,189 +106,184 @@ type adxl345DataFormat struct {
intInvert uint8 intInvert uint8
fullRes uint8 fullRes uint8
justify uint8 justify uint8
sensorRange uint8 fullScaleRange ADXL345FsRangeConfig
} }
// Internal structure for the sampling rate configuration // Internal structure for the sampling rate configuration
type adxl345BwRate struct { type adxl345BwRate struct {
lowPower uint8 lowPower bool
rate uint8 rate ADXL345RateConfig
} }
// NewADXL345Driver creates a new driver with specified i2c interface // NewADXL345Driver creates a new driver with specified i2c interface
// Params: // Params:
// conn Connector - the Adaptor to use with this Driver // c Connector - the Adaptor to use with this Driver
// //
// Optional params: // Optional params:
// i2c.WithBus(int): bus to use with this driver // i2c.WithBus(int): bus to use with this driver
// i2c.WithAddress(int): address to use with this driver // i2c.WithAddress(int): address to use with this driver
// //
func NewADXL345Driver(a Connector, options ...func(Config)) *ADXL345Driver { func NewADXL345Driver(c Connector, options ...func(Config)) *ADXL345Driver {
m := &ADXL345Driver{ d := &ADXL345Driver{
name: gobot.DefaultName("ADXL345"), Driver: NewDriver(c, "ADXL345", adxl345DefaultAddress),
connector: a,
powerCtl: adxl345PowerCtl{ powerCtl: adxl345PowerCtl{
measure: 1, measure: 1,
}, },
dataFormat: adxl345DataFormat{ dataFormat: adxl345DataFormat{
sensorRange: ADXL345_RANGE_2G, fullScaleRange: ADXL345FsRange_2G,
}, },
bwRate: adxl345BwRate{ bwRate: adxl345BwRate{
lowPower: 1, lowPower: true,
rate: ADXL345_RATE_100HZ, rate: ADXL345Rate_100HZ,
}, },
Config: NewConfig(),
} }
d.afterStart = d.initialize
d.beforeHalt = d.shutdown
for _, option := range options { for _, option := range options {
option(m) option(d)
} }
// TODO: add commands for API // TODO: add commands for API
return m return d
} }
// Name returns the Name for the Driver // WithADXL345LowPowerMode option modifies the low power mode.
func (h *ADXL345Driver) Name() string { return h.name } func WithADXL345LowPowerMode(val bool) func(Config) {
return func(c Config) {
if d, ok := c.(*ADXL345Driver); ok {
d.bwRate.lowPower = val
} else if adxl345Debug {
log.Printf("Trying to modify low power mode for non-ADXL345Driver %v", c)
}
}
}
// SetName sets the Name for the Driver // WithADXL345DataOutputRate option sets the data output rate.
func (h *ADXL345Driver) SetName(n string) { h.name = n } // Valid settings are of type "ADXL345RateConfig"
func WithADXL345DataOutputRate(val ADXL345RateConfig) func(Config) {
return func(c Config) {
if d, ok := c.(*ADXL345Driver); ok {
d.bwRate.rate = val
} else if adxl345Debug {
log.Printf("Trying to set data output rate for non-ADXL345Driver %v", c)
}
}
}
// Connection returns the connection for the Driver // WithADXL345FullScaleRange option sets the full scale range.
func (h *ADXL345Driver) Connection() gobot.Connection { return h.connector.(gobot.Connection) } // Valid settings are of type "ADXL345FsRangeConfig"
func WithADXL345FullScaleRange(val ADXL345FsRangeConfig) func(Config) {
return func(c Config) {
if d, ok := c.(*ADXL345Driver); ok {
d.dataFormat.fullScaleRange = val
} else if adxl345Debug {
log.Printf("Trying to set full scale range for non-ADXL345Driver %v", c)
}
}
}
// Start initialized the adxl345 // UseLowPower change the current rate of the sensor
func (h *ADXL345Driver) Start() (err error) { func (d *ADXL345Driver) UseLowPower(lowPower bool) (err error) {
bus := h.GetBusOrDefault(h.connector.GetDefaultBus()) d.mutex.Lock()
address := h.GetAddressOrDefault(ADXL345AddressLow) defer d.mutex.Unlock()
h.connection, err = h.connector.GetConnection(address, bus) d.bwRate.lowPower = lowPower
if err := d.connection.WriteByteData(adxl345Reg_BW_RATE, d.bwRate.toByte()); err != nil {
return err
}
return
}
// SetRate change the current rate of the sensor immediately
func (d *ADXL345Driver) SetRate(rate ADXL345RateConfig) (err error) {
d.mutex.Lock()
defer d.mutex.Unlock()
d.bwRate.rate = rate
if err := d.connection.WriteByteData(adxl345Reg_BW_RATE, d.bwRate.toByte()); err != nil {
return err
}
return
}
// SetRange change the current range of the sensor immediately
func (d *ADXL345Driver) SetRange(fullScaleRange ADXL345FsRangeConfig) (err error) {
d.mutex.Lock()
defer d.mutex.Unlock()
d.dataFormat.fullScaleRange = fullScaleRange
if err := d.connection.WriteByteData(adxl345Reg_DATA_FORMAT, d.dataFormat.toByte()); err != nil {
return err
}
return
}
// XYZ returns the adjusted x, y and z axis, unit [g]
func (d *ADXL345Driver) XYZ() (float64, float64, float64, error) {
d.mutex.Lock()
defer d.mutex.Unlock()
xr, yr, zr, err := d.readRawData()
if err != nil { if err != nil {
return err return 0, 0, 0, err
} }
if _, err := h.connection.Write([]byte{ADXL345_REG_BW_RATE, h.bwRate.toByte()}); err != nil { return d.dataFormat.convertToG(xr), d.dataFormat.convertToG(yr), d.dataFormat.convertToG(zr), nil
return err
} }
if _, err := h.connection.Write([]byte{ADXL345_REG_POWER_CTL, h.powerCtl.toByte()}); err != nil { // XYZ returns the raw x,y and z axis
return err func (d *ADXL345Driver) RawXYZ() (int16, int16, int16, error) {
d.mutex.Lock()
defer d.mutex.Unlock()
return d.readRawData()
} }
if _, err := h.connection.Write([]byte{ADXL345_REG_DATA_FORMAT, h.dataFormat.toByte()}); err != nil { func (d *ADXL345Driver) readRawData() (int16, int16, int16, error) {
return err
}
return
}
// Stop adxl345
func (h *ADXL345Driver) Stop() (err error) {
h.powerCtl.measure = 0
if h.connection == nil {
return errors.New("connection not available")
}
if _, err := h.connection.Write([]byte{ADXL345_REG_POWER_CTL, h.powerCtl.toByte()}); err != nil {
return err
}
return
}
// Halt returns true if devices is halted successfully
func (h *ADXL345Driver) Halt() (err error) {
h.Stop()
return
}
// XYZ returns the adjusted x, y and z axis from the adxl345
func (h *ADXL345Driver) XYZ() (float64, float64, float64, error) {
err := h.update()
return h.x, h.y, h.z, err
}
// XYZ returns the raw x,y and z axis from the adxl345
func (h *ADXL345Driver) RawXYZ() (int16, int16, int16, error) {
err := h.update()
return h.rawX, h.rawY, h.rawZ, err
}
// update the cached values for the axis to avoid errors if the connection is not available (polling too frequently)
func (h *ADXL345Driver) update() (err error) {
if h.connection == nil {
return errors.New("connection not available")
}
h.connection.Write([]byte{ADXL345_REG_DATAX0})
buf := []byte{0, 0, 0, 0, 0, 0} buf := []byte{0, 0, 0, 0, 0, 0}
if err := d.connection.ReadBlockData(adxl345Reg_DATAX0, buf); err != nil {
_, err = h.connection.Read(buf) return 0, 0, 0, err
if err != nil {
return
} }
h.rawX = int16(binary.LittleEndian.Uint16(buf[0:2])) rx := int16(binary.LittleEndian.Uint16(buf[0:2]))
h.rawY = int16(binary.LittleEndian.Uint16(buf[2:4])) ry := int16(binary.LittleEndian.Uint16(buf[2:4]))
h.rawZ = int16(binary.LittleEndian.Uint16(buf[4:6])) rz := int16(binary.LittleEndian.Uint16(buf[4:6]))
return rx, ry, rz, nil
h.x = h.dataFormat.ConvertToSI(h.rawX)
h.y = h.dataFormat.ConvertToSI(h.rawY)
h.z = h.dataFormat.ConvertToSI(h.rawZ)
return
} }
// SetRate change the current rate of the sensor func (d *ADXL345Driver) initialize() error {
func (h *ADXL345Driver) UseLowPower(power bool) (err error) { if err := d.connection.WriteByteData(adxl345Reg_BW_RATE, d.bwRate.toByte()); err != nil {
if power {
h.bwRate.lowPower = 1
} else {
h.bwRate.lowPower = 0
}
if _, err := h.connection.Write([]byte{ADXL345_REG_BW_RATE, h.bwRate.toByte()}); err != nil {
return err return err
} }
return if err := d.connection.WriteByteData(adxl345Reg_POWER_CTL, d.powerCtl.toByte()); err != nil {
}
// SetRate change the current rate of the sensor
func (h *ADXL345Driver) SetRate(rate byte) (err error) {
if rate <= ADXL345_RATE_3200HZ {
return errors.New("not a valid rate")
}
h.bwRate.rate = rate & 0x0F
if _, err := h.connection.Write([]byte{ADXL345_REG_BW_RATE, h.bwRate.toByte()}); err != nil {
return err return err
} }
return if err := d.connection.WriteByteData(adxl345Reg_DATA_FORMAT, d.dataFormat.toByte()); err != nil {
}
// SetRange change the current range of the sensor
func (h *ADXL345Driver) SetRange(sensorRange byte) (err error) {
if sensorRange != ADXL345_RANGE_2G &&
sensorRange != ADXL345_RANGE_4G &&
sensorRange != ADXL345_RANGE_8G &&
sensorRange != ADXL345_RANGE_16G {
return errors.New("not a valid range")
}
h.dataFormat.sensorRange = sensorRange & 0x03
if _, err := h.connection.Write([]byte{ADXL345_REG_DATA_FORMAT, h.dataFormat.toByte()}); err != nil {
return err return err
} }
return
return nil
} }
// ConvertToSI adjusts the raw values from the adxl345 with the range configuration func (d *ADXL345Driver) shutdown() error {
func (d *adxl345DataFormat) ConvertToSI(rawValue int16) float64 { d.powerCtl.measure = 0
switch d.sensorRange { if d.connection == nil {
case ADXL345_RANGE_2G: return errors.New("connection not available")
}
return d.connection.WriteByteData(adxl345Reg_POWER_CTL, d.powerCtl.toByte())
}
// convertToG converts the given raw value by range configuration to the unit [g]
func (d *adxl345DataFormat) convertToG(rawValue int16) float64 {
switch d.fullScaleRange {
case ADXL345FsRange_2G:
return float64(rawValue) * 2 / 512 return float64(rawValue) * 2 / 512
case ADXL345_RANGE_4G: case ADXL345FsRange_4G:
return float64(rawValue) * 4 / 512 return float64(rawValue) * 4 / 512
case ADXL345_RANGE_8G: case ADXL345FsRange_8G:
return float64(rawValue) * 8 / 512 return float64(rawValue) * 8 / 512
case ADXL345_RANGE_16G: case ADXL345FsRange_16G:
return float64(rawValue) * 16 / 512 return float64(rawValue) * 16 / 512
default: default:
return 0 return 0
@ -294,35 +291,29 @@ func (d *adxl345DataFormat) ConvertToSI(rawValue int16) float64 {
} }
// toByte returns a byte from the powerCtl configuration // toByte returns a byte from the powerCtl configuration
func (p *adxl345PowerCtl) toByte() (bits uint8) { func (p *adxl345PowerCtl) toByte() uint8 {
bits = 0x00 bits := p.wakeUp
bits = bits | (p.link << 5)
bits = bits | (p.autoSleep << 4)
bits = bits | (p.measure << 3)
bits = bits | (p.sleep << 2) bits = bits | (p.sleep << 2)
bits = bits | p.wakeUp bits = bits | (p.measure << 3)
bits = bits | (p.autoSleep << 4)
return bits return bits | (p.link << 5)
} }
// toByte returns a byte from the dataFormat configuration // toByte returns a byte from the dataFormat configuration
func (d *adxl345DataFormat) toByte() (bits uint8) { func (d *adxl345DataFormat) toByte() uint8 {
bits = 0x00 bits := uint8(d.fullScaleRange)
bits = bits | (d.selfTest << 7)
bits = bits | (d.spi << 6)
bits = bits | (d.intInvert << 5)
bits = bits | (d.fullRes << 3)
bits = bits | (d.justify << 2) bits = bits | (d.justify << 2)
bits = bits | d.sensorRange bits = bits | (d.fullRes << 3)
bits = bits | (d.intInvert << 5)
return bits bits = bits | (d.spi << 6)
return bits | (d.selfTest << 7)
} }
// toByte returns a byte from the bwRate configuration // toByte returns a byte from the bwRate configuration
func (b *adxl345BwRate) toByte() (bits uint8) { func (b *adxl345BwRate) toByte() uint8 {
bits = 0x00 bits := uint8(b.rate)
bits = bits | (b.lowPower << 4) if b.lowPower {
bits = bits | b.rate bits = bits | adxl345Rate_LowPowerBit
}
return bits return bits
} }

View File

@ -1,7 +1,6 @@
package i2c package i2c
import ( import (
"bytes"
"errors" "errors"
"strings" "strings"
"testing" "testing"
@ -10,144 +9,314 @@ import (
"gobot.io/x/gobot/gobottest" "gobot.io/x/gobot/gobottest"
) )
// this ensures that the implementation is based on i2c.Driver, which implements the gobot.Driver
// and tests all implementations, so no further tests needed here for gobot.Driver interface
var _ gobot.Driver = (*ADXL345Driver)(nil) var _ gobot.Driver = (*ADXL345Driver)(nil)
// --------- HELPERS func initTestADXL345WithStubbedAdaptor() (*ADXL345Driver, *i2cTestAdaptor) {
func initTestADXL345Driver() (driver *ADXL345Driver) { a := newI2cTestAdaptor()
driver, _ = initTestADXL345DriverWithStubbedAdaptor() d := NewADXL345Driver(a)
return return d, a
} }
func initTestADXL345DriverWithStubbedAdaptor() (*ADXL345Driver, *i2cTestAdaptor) {
adaptor := newI2cTestAdaptor()
return NewADXL345Driver(adaptor), adaptor
}
// --------- TESTS
func TestNewADXL345Driver(t *testing.T) { func TestNewADXL345Driver(t *testing.T) {
// Does it return a pointer to an instance of ADXL345Driver? var di interface{} = NewADXL345Driver(newI2cTestAdaptor())
var mma interface{} = NewADXL345Driver(newI2cTestAdaptor()) d, ok := di.(*ADXL345Driver)
_, ok := mma.(*ADXL345Driver)
if !ok { if !ok {
t.Errorf("NewADXL345Driver() should have returned a *ADXL345Driver") t.Errorf("NewADXL345Driver() should have returned a *ADXL345Driver")
} }
gobottest.Refute(t, d.Driver, nil)
gobottest.Assert(t, strings.HasPrefix(d.Name(), "ADXL345"), true)
gobottest.Assert(t, d.powerCtl.measure, uint8(1))
gobottest.Assert(t, d.dataFormat.fullScaleRange, ADXL345FsRangeConfig(0x00))
gobottest.Assert(t, d.bwRate.rate, ADXL345RateConfig(0x0A))
gobottest.Assert(t, d.bwRate.lowPower, true)
} }
// Methods func TestADXL345Options(t *testing.T) {
func TestADXL345Driver(t *testing.T) { // This is a general test, that options are applied in constructor by using the common WithBus() option and
mma := initTestADXL345Driver() // least one of this driver. Further tests for options can also be done by call of "WithOption(val)(d)".
d := NewADXL345Driver(newI2cTestAdaptor(), WithBus(2), WithADXL345LowPowerMode(false))
gobottest.Refute(t, mma.Connection(), nil)
gobottest.Assert(t, strings.HasPrefix(mma.Name(), "ADXL345"), true)
}
func TestADXL345DriverSetName(t *testing.T) {
d := initTestADXL345Driver()
d.SetName("TESTME")
gobottest.Assert(t, d.Name(), "TESTME")
}
func TestADXL345DriverOptions(t *testing.T) {
d := NewADXL345Driver(newI2cTestAdaptor(), WithBus(2))
gobottest.Assert(t, d.GetBusOrDefault(1), 2) gobottest.Assert(t, d.GetBusOrDefault(1), 2)
gobottest.Assert(t, d.bwRate.lowPower, false)
} }
func TestADXL345DriverStart(t *testing.T) { func TestADXL345WithADXL345DataOutputRate(t *testing.T) {
d := initTestADXL345Driver() // arrange
gobottest.Assert(t, d.Start(), nil) d, a := initTestADXL345WithStubbedAdaptor()
a.written = []byte{} // reset writes of former test
const (
setVal = ADXL345RateConfig(0x0E) // 1.6kHz
)
// act
WithADXL345DataOutputRate(setVal)(d)
// assert
gobottest.Assert(t, d.bwRate.rate, setVal)
gobottest.Assert(t, len(a.written), 0)
} }
func TestADXL345StartConnectError(t *testing.T) { func TestADXL345WithADXL345FullScaleRange(t *testing.T) {
d, adaptor := initTestADXL345DriverWithStubbedAdaptor() // arrange
adaptor.Testi2cConnectErr(true) d, a := initTestADXL345WithStubbedAdaptor()
gobottest.Assert(t, d.Start(), errors.New("Invalid i2c connection")) a.written = []byte{} // reset writes of former test
const (
setVal = ADXL345FsRangeConfig(0x02) // +-8 g
)
// act
WithADXL345FullScaleRange(setVal)(d)
// assert
gobottest.Assert(t, d.dataFormat.fullScaleRange, setVal)
gobottest.Assert(t, len(a.written), 0)
} }
func TestADXL345DriverStartWriteError(t *testing.T) { func TestADXL345UseLowPower(t *testing.T) {
mma, adaptor := initTestADXL345DriverWithStubbedAdaptor() // sequence to set low power:
adaptor.i2cWriteImpl = func([]byte) (int, error) { // * set value in data rate structure
return 0, errors.New("write error") // * write the data rate register (0x2C)
} d, a := initTestADXL345WithStubbedAdaptor()
gobottest.Assert(t, mma.Start(), errors.New("write error"))
}
func TestADXL345DriverHalt(t *testing.T) {
d := initTestADXL345Driver()
gobottest.Assert(t, d.Start(), nil)
gobottest.Assert(t, d.Halt(), nil)
}
func TestADXL345DriverNullXYZ(t *testing.T) {
d, _ := initTestADXL345DriverWithStubbedAdaptor()
d.Start() d.Start()
x, y, z, _ := d.XYZ() a.written = []byte{} // reset writes of former test
gobottest.Assert(t, x, 0.0) setVal := !d.bwRate.lowPower
gobottest.Assert(t, y, 0.0) const (
gobottest.Assert(t, z, 0.0) wantReg = uint8(0x2C)
wantVal = uint8(0x0A) // only 100 Hz left over
)
// act
err := d.UseLowPower(setVal)
// assert
gobottest.Assert(t, err, nil)
gobottest.Assert(t, d.bwRate.lowPower, setVal)
gobottest.Assert(t, len(a.written), 2)
gobottest.Assert(t, a.written[0], wantReg)
gobottest.Assert(t, a.written[1], wantVal)
} }
func TestADXL345DriverXYZ(t *testing.T) { func TestADXL345SetRate(t *testing.T) {
d, adaptor := initTestADXL345DriverWithStubbedAdaptor() // sequence to set rate:
// * set value in data rate structure
// * write the data rate register (0x2C)
d, a := initTestADXL345WithStubbedAdaptor()
d.Start() d.Start()
a.written = []byte{} // reset writes of former test
adaptor.i2cReadImpl = func(b []byte) (int, error) { const (
buf := new(bytes.Buffer) setVal = ADXL345RateConfig(0x0F) // 3.2kHz
buf.Write([]byte{218, 0, 251, 255, 100, 0}) wantReg = uint8(0x2C)
copy(b, buf.Bytes()) wantVal = uint8(0x1F) // also low power bit
return buf.Len(), nil )
// act
err := d.SetRate(setVal)
// assert
gobottest.Assert(t, err, nil)
gobottest.Assert(t, d.bwRate.rate, setVal)
gobottest.Assert(t, len(a.written), 2)
gobottest.Assert(t, a.written[0], wantReg)
gobottest.Assert(t, a.written[1], wantVal)
} }
x, y, z, _ := d.XYZ() func TestADXL345SetRange(t *testing.T) {
gobottest.Assert(t, x, 0.8515625) // sequence to set range:
gobottest.Assert(t, y, -0.01953125) // * set value in data format structure
gobottest.Assert(t, z, 0.390625) // * write the data format register (0x31)
} d, a := initTestADXL345WithStubbedAdaptor()
func TestADXL345DriverXYZError(t *testing.T) {
d, adaptor := initTestADXL345DriverWithStubbedAdaptor()
d.Start() d.Start()
a.written = []byte{} // reset writes of former test
const (
setVal = ADXL345FsRangeConfig(0x03) // +/- 16 g
wantReg = uint8(0x31)
wantVal = uint8(0x03)
)
// act
err := d.SetRange(setVal)
// assert
gobottest.Assert(t, err, nil)
gobottest.Assert(t, d.dataFormat.fullScaleRange, setVal)
gobottest.Assert(t, len(a.written), 2)
gobottest.Assert(t, a.written[0], wantReg)
gobottest.Assert(t, a.written[1], wantVal)
}
adaptor.i2cReadImpl = func(b []byte) (int, error) { func TestADXL345RawXYZ(t *testing.T) {
// sequence to read:
// * prepare read, see test of initialize()
// * read data output registers (0x32, 3 x 16 bit, LSByte first)
// * apply two's complement converter
//
// arrange
var tests = map[string]struct {
inputX []uint8
inputY []uint8
inputZ []uint8
wantX int16
wantY int16
wantZ int16
}{
"+FS_0_-FS": {
inputX: []uint8{0xFF, 0x07},
inputY: []uint8{0x00, 0x00},
inputZ: []uint8{0x00, 0xF8},
wantX: (1<<11 - 1),
wantY: 0,
wantZ: -(1 << 11),
},
"-4096_-1_+1": {
inputX: []uint8{0x00, 0xF0},
inputY: []uint8{0xFF, 0xFF},
inputZ: []uint8{0x01, 0x00},
wantX: -4096,
wantY: -1,
wantZ: 1,
},
}
d, a := initTestADXL345WithStubbedAdaptor()
d.Start()
for name, tc := range tests {
t.Run(name, func(t *testing.T) {
a.written = []byte{} // reset writes of former test and start
// arrange reads
returnRead := append(append(tc.inputX, tc.inputY...), tc.inputZ...)
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
copy(b, returnRead)
return len(b), nil
}
// act
gotX, gotY, gotZ, err := d.RawXYZ()
// assert
gobottest.Assert(t, err, nil)
gobottest.Assert(t, gotX, tc.wantX)
gobottest.Assert(t, gotY, tc.wantY)
gobottest.Assert(t, gotZ, tc.wantZ)
gobottest.Assert(t, numCallsRead, 1)
gobottest.Assert(t, len(a.written), 1)
gobottest.Assert(t, a.written[0], uint8(0x32))
})
}
}
func TestADXL345RawXYZError(t *testing.T) {
// arrange
d, a := initTestADXL345WithStubbedAdaptor()
d.Start()
a.i2cReadImpl = func(b []byte) (int, error) {
return 0, errors.New("read error") return 0, errors.New("read error")
} }
// act
_, _, _, err := d.XYZ()
gobottest.Assert(t, err, errors.New("read error"))
}
func TestADXL345DriverRawXYZ(t *testing.T) {
d, adaptor := initTestADXL345DriverWithStubbedAdaptor()
d.Start()
adaptor.i2cReadImpl = func(b []byte) (int, error) {
buf := new(bytes.Buffer)
buf.Write([]byte{218, 0, 251, 255, 100, 0})
copy(b, buf.Bytes())
return buf.Len(), nil
}
x, y, z, _ := d.RawXYZ()
gobottest.Assert(t, int(x), 218)
gobottest.Assert(t, int(y), -5)
gobottest.Assert(t, int(z), 100)
}
func TestADXL345DriverRawXYZError(t *testing.T) {
d, adaptor := initTestADXL345DriverWithStubbedAdaptor()
d.Start()
adaptor.i2cReadImpl = func(b []byte) (int, error) {
return 0, errors.New("read error")
}
_, _, _, err := d.RawXYZ() _, _, _, err := d.RawXYZ()
// assert
gobottest.Assert(t, err, errors.New("read error")) gobottest.Assert(t, err, errors.New("read error"))
} }
func TestADXL345DriverSetRange(t *testing.T) { func TestADXL345XYZ(t *testing.T) {
d := initTestADXL345Driver() // arrange
d.Start() var tests = map[string]struct {
gobottest.Assert(t, d.SetRange(ADXL345_RANGE_16G), nil) inputX []uint8
inputY []uint8
inputZ []uint8
wantX float64
wantY float64
wantZ float64
}{
"null_value": {
inputX: []uint8{0, 0},
inputY: []uint8{0, 0},
inputZ: []uint8{0, 0},
wantX: 0,
wantY: 0,
wantZ: 0,
},
"some_value": {
inputX: []uint8{218, 0},
inputY: []uint8{251, 255},
inputZ: []uint8{100, 0},
wantX: 0.8515625,
wantY: -0.01953125,
wantZ: 0.390625,
},
}
for name, tc := range tests {
t.Run(name, func(t *testing.T) {
// arrange
d, a := initTestADXL345WithStubbedAdaptor()
d.Start()
a.written = []byte{} // reset writes of former test and start
// arrange reads
returnRead := append(append(tc.inputX, tc.inputY...), tc.inputZ...)
numCallsRead := 0
a.i2cReadImpl = func(b []byte) (int, error) {
numCallsRead++
copy(b, returnRead)
return len(b), nil
}
// act
x, y, z, _ := d.XYZ()
// assert
gobottest.Assert(t, x, tc.wantX)
gobottest.Assert(t, y, tc.wantY)
gobottest.Assert(t, z, tc.wantZ)
})
}
}
func TestADXL345XYZError(t *testing.T) {
// arrange
d, a := initTestADXL345WithStubbedAdaptor()
d.Start()
a.i2cReadImpl = func(b []byte) (int, error) {
return 0, errors.New("read error")
}
// act
_, _, _, err := d.XYZ()
// assert
gobottest.Assert(t, err, errors.New("read error"))
}
func TestADXL345_initialize(t *testing.T) {
// sequence to prepare read in initialize():
// * prepare rate register content (data output rate, low power mode)
// * prepare power control register content (wake up, sleep, measure, auto sleep, link)
// * prepare data format register (fullScaleRange, justify, fullRes, intInvert, spi, selfTest)
// * write 3 registers
// arrange
d, a := initTestADXL345WithStubbedAdaptor()
a.written = []byte{} // reset writes of former test
const (
wantRateReg = uint8(0x2C)
wantRateRegVal = uint8(0x1A) // 100HZ and low power
wantPwrReg = uint8(0x2D)
wantPwrRegVal = uint8(0x08) // measurement on
wantFormatReg = uint8(0x31)
wantFormatRegVal = uint8(0x00) // FS to +/-2 g
)
// act, assert - initialize() must be called on Start()
err := d.Start()
// assert
gobottest.Assert(t, err, nil)
gobottest.Assert(t, len(a.written), 6)
gobottest.Assert(t, a.written[0], wantRateReg)
gobottest.Assert(t, a.written[1], wantRateRegVal)
gobottest.Assert(t, a.written[2], wantPwrReg)
gobottest.Assert(t, a.written[3], wantPwrRegVal)
gobottest.Assert(t, a.written[4], wantFormatReg)
gobottest.Assert(t, a.written[5], wantFormatRegVal)
}
func TestADXL345_shutdown(t *testing.T) {
// sequence to prepare read in shutdown():
// * reset the measurement bit in structure
// * write the power control register (0x2D)
d, a := initTestADXL345WithStubbedAdaptor()
d.Start()
a.written = []byte{} // reset writes of former test
const (
wantReg = uint8(0x2D)
wantVal = uint8(0x00)
)
// act, assert - shutdown() must be called on Halt()
err := d.Halt()
// assert
gobottest.Assert(t, err, nil)
gobottest.Assert(t, len(a.written), 2)
gobottest.Assert(t, a.written[0], wantReg)
gobottest.Assert(t, a.written[1], wantVal)
} }