1
0
mirror of https://github.com/hybridgroup/gobot.git synced 2025-05-04 22:17:39 +08:00
hybridgroup.gobot/drivers/i2c/bmp388_driver.go

334 lines
9.8 KiB
Go
Raw Normal View History

package i2c
import (
"bytes"
"encoding/binary"
"fmt"
2022-09-21 19:35:01 +02:00
"log"
"math"
)
2022-09-21 19:35:01 +02:00
const bmp388Debug = false
2022-09-21 19:35:01 +02:00
// the default address is applicable for SDO to VDD, for SDO to GND it will be 0x76
const bmp388DefaultAddress = 0x77
// BMP388Accuracy accuracy type
type BMP388Accuracy uint8
2022-09-21 19:35:01 +02:00
type BMP388IIRFilter uint8
const (
2022-09-21 19:35:01 +02:00
bmp388ChipID = 0x50
bmp388RegChipID = 0x00
bmp388RegStatus = 0x03
bmp388RegPressureData = 0x04 // XLSB, 0x05 LSByte, 0x06 MSByte
bmp388RegTempData = 0x07 // XLSB, 0x08 LSByte, 0x09 MSByte
bmp388RegPWRCTRL = 0x1B // enable/disable pressure and temperature measurement, mode
bmp388RegOSR = 0x1C // Oversampling Rates
bmp388RegODR = 0x1D // Output Data Rates
bmp388RegConf = 0x1F // config filter for IIR coefficients
bmp388RegCalib00 = 0x31
bmp388RegCMD = 0x7E
// bits 0, 1 of control register
bmp388PWRCTRLPressEnableBit = 0x01
bmp388PWRCTRLTempEnableBit = 0x02
// bits 4, 5 of control register (will be shifted on write)
bmp388PWRCTRLSleep = 0x00
bmp388PWRCTRLForced = 0x01 // same as 0x02
bmp388PWRCTRLNormal = 0x03
// bits 1, 2 ,3 of config filter IIR filter coefficients (will be shifted on write)
bmp388ConfFilterCoef0 BMP388IIRFilter = 0 // bypass-mode
bmp388ConfFilterCoef1 BMP388IIRFilter = 1
bmp388ConfFilterCoef3 BMP388IIRFilter = 2
bmp388ConfFilterCoef7 BMP388IIRFilter = 3
bmp388ConfFilterCoef15 BMP388IIRFilter = 4
bmp388ConfFilterCoef31 BMP388IIRFilter = 5
bmp388ConfFilterCoef63 BMP388IIRFilter = 6
bmp388ConfFilterCoef127 BMP388IIRFilter = 7
// oversampling rate, a single value is used (could be different for pressure and temperature)
BMP388AccuracyUltraLow BMP388Accuracy = 0 // x1 sample
BMP388AccuracyLow BMP388Accuracy = 1 // x2 samples
BMP388AccuracyStandard BMP388Accuracy = 2 // x4 samples
BMP388AccuracyHigh BMP388Accuracy = 3 // x8 samples
BMP388AccuracyUltraHigh BMP388Accuracy = 4 // x16 samples
BMP388AccuracyHighest BMP388Accuracy = 5 // x32 samples
2022-09-21 19:35:01 +02:00
bmp388CMDReserved = 0x00 // reserved, no command
bmp388CMDExtModeEnMiddle = 0x34
bmp388CMDFifoFlush = 0xB0 // clears all data in the FIFO, does not change FIFO_CONFIG registers
bmp388CMDSoftReset = 0xB6 // triggers a reset, all user configuration settings are overwritten with their default state
bmp388SeaLevelPressure = 1013.25
)
type bmp388CalibrationCoefficients struct {
t1 float32
t2 float32
t3 float32
p1 float32
p2 float32
p3 float32
p4 float32
p5 float32
p6 float32
p7 float32
p8 float32
p9 float32
p10 float32
p11 float32
}
// BMP388Driver is a driver for the BMP388 temperature/pressure sensor
type BMP388Driver struct {
2022-09-21 19:35:01 +02:00
*Driver
calCoeffs *bmp388CalibrationCoefficients
ctrlPwrMode uint8
confFilter BMP388IIRFilter
}
// NewBMP388Driver creates a new driver with specified i2c interface.
// Params:
2022-09-21 19:35:01 +02:00
// c Connector - the Adaptor to use with this Driver
//
// Optional params:
// i2c.WithBus(int): bus to use with this driver
// i2c.WithAddress(int): address to use with this driver
//
func NewBMP388Driver(c Connector, options ...func(Config)) *BMP388Driver {
2022-09-21 19:35:01 +02:00
d := &BMP388Driver{
Driver: NewDriver(c, "BMP388", bmp388DefaultAddress),
calCoeffs: &bmp388CalibrationCoefficients{},
ctrlPwrMode: bmp388PWRCTRLForced,
confFilter: bmp388ConfFilterCoef0,
}
2022-09-21 19:35:01 +02:00
d.afterStart = d.initialization
for _, option := range options {
2022-09-21 19:35:01 +02:00
option(d)
}
// TODO: expose commands to API
2022-09-21 19:35:01 +02:00
return d
}
2022-09-21 19:35:01 +02:00
// WithBMP388IIRFilter option sets count of IIR filter coefficients.
// Valid settings are of type "BMP388IIRFilter"
func WithBMP388IIRFilter(val BMP388IIRFilter) func(Config) {
return func(c Config) {
if d, ok := c.(*BMP388Driver); ok {
d.confFilter = val
} else if bmp388Debug {
log.Printf("Trying to set IIR filter for non-BMP388Driver %v", c)
}
}
}
// Temperature returns the current temperature, in celsius degrees.
func (d *BMP388Driver) Temperature(accuracy BMP388Accuracy) (temp float32, err error) {
2022-09-21 19:35:01 +02:00
d.mutex.Lock()
defer d.mutex.Unlock()
var rawT int32
2022-09-21 19:35:01 +02:00
mode := uint8(d.ctrlPwrMode)<<4 | bmp388PWRCTRLPressEnableBit | bmp388PWRCTRLTempEnableBit
if err = d.connection.WriteByteData(bmp388RegPWRCTRL, mode); err != nil {
return 0, err
}
// Set Accuracy for temperature
2022-09-21 19:35:01 +02:00
if err = d.connection.WriteByteData(bmp388RegOSR, uint8(accuracy<<3)); err != nil {
return 0, err
}
if rawT, err = d.rawTemp(); err != nil {
return 0.0, err
}
temp = d.calculateTemp(rawT)
return
}
// Pressure returns the current barometric pressure, in Pa
func (d *BMP388Driver) Pressure(accuracy BMP388Accuracy) (press float32, err error) {
2022-09-21 19:35:01 +02:00
d.mutex.Lock()
defer d.mutex.Unlock()
var rawT, rawP int32
2022-09-21 19:35:01 +02:00
mode := uint8(d.ctrlPwrMode)<<4 | bmp388PWRCTRLPressEnableBit | bmp388PWRCTRLTempEnableBit
if err = d.connection.WriteByteData(bmp388RegPWRCTRL, mode); err != nil {
return 0, err
}
// Set Standard Accuracy for pressure
2022-09-21 19:35:01 +02:00
if err = d.connection.WriteByteData(bmp388RegOSR, uint8(accuracy)); err != nil {
return 0, err
}
if rawT, err = d.rawTemp(); err != nil {
return 0.0, err
}
if rawP, err = d.rawPressure(); err != nil {
return 0.0, err
}
tLin := d.calculateTemp(rawT)
return d.calculatePress(rawP, float64(tLin)), nil
}
// Altitude returns the current altitude in meters based on the
// current barometric pressure and estimated pressure at sea level.
// https://www.weather.gov/media/epz/wxcalc/pressureAltitude.pdf
func (d *BMP388Driver) Altitude(accuracy BMP388Accuracy) (alt float32, err error) {
atmP, _ := d.Pressure(accuracy)
atmP /= 100.0
alt = float32(44307.0 * (1.0 - math.Pow(float64(atmP/bmp388SeaLevelPressure), 0.190284)))
return
}
// initialization reads the calibration coefficients.
func (d *BMP388Driver) initialization() (err error) {
2022-09-21 19:35:01 +02:00
var chipID uint8
if chipID, err = d.connection.ReadByteData(bmp388RegChipID); err != nil {
return err
}
if bmp388ChipID != chipID {
return fmt.Errorf("Incorrect BMP388 chip ID '0%x' Expected 0x%x", chipID, bmp388ChipID)
}
var (
2022-09-21 19:35:01 +02:00
t1 uint16
t2 uint16
t3 int8
p1 int16
p2 int16
p3 int8
p4 int8
p5 uint16
p6 uint16
p7 int8
p8 int8
p9 int16
p10 int8
p11 int8
)
2022-09-21 19:35:01 +02:00
coefficients := make([]byte, 24)
if err = d.connection.ReadBlockData(bmp388RegCalib00, coefficients); err != nil {
return err
}
buf := bytes.NewBuffer(coefficients)
2020-09-27 14:41:26 +02:00
binary.Read(buf, binary.LittleEndian, &t1)
binary.Read(buf, binary.LittleEndian, &t2)
binary.Read(buf, binary.LittleEndian, &t3)
binary.Read(buf, binary.LittleEndian, &p1)
binary.Read(buf, binary.LittleEndian, &p2)
binary.Read(buf, binary.LittleEndian, &p3)
binary.Read(buf, binary.LittleEndian, &p4)
binary.Read(buf, binary.LittleEndian, &p5)
binary.Read(buf, binary.LittleEndian, &p6)
binary.Read(buf, binary.LittleEndian, &p7)
binary.Read(buf, binary.LittleEndian, &p8)
binary.Read(buf, binary.LittleEndian, &p9)
binary.Read(buf, binary.LittleEndian, &p10)
binary.Read(buf, binary.LittleEndian, &p11)
2022-09-21 19:35:01 +02:00
d.calCoeffs.t1 = float32(float64(t1) / math.Pow(2, -8))
d.calCoeffs.t2 = float32(float64(t2) / math.Pow(2, 30))
d.calCoeffs.t3 = float32(float64(t3) / math.Pow(2, 48))
d.calCoeffs.p1 = float32((float64(p1) - math.Pow(2, 14)) / math.Pow(2, 20))
d.calCoeffs.p2 = float32((float64(p2) - math.Pow(2, 14)) / math.Pow(2, 29))
d.calCoeffs.p3 = float32(float64(p3) / math.Pow(2, 32))
d.calCoeffs.p4 = float32(float64(p4) / math.Pow(2, 37))
d.calCoeffs.p5 = float32(float64(p5) / math.Pow(2, -3))
d.calCoeffs.p6 = float32(float64(p6) / math.Pow(2, 6))
d.calCoeffs.p7 = float32(float64(p7) / math.Pow(2, 8))
d.calCoeffs.p8 = float32(float64(p8) / math.Pow(2, 15))
d.calCoeffs.p9 = float32(float64(p9) / math.Pow(2, 48))
d.calCoeffs.p10 = float32(float64(p10) / math.Pow(2, 48))
d.calCoeffs.p11 = float32(float64(p11) / math.Pow(2, 65))
if err = d.connection.WriteByteData(bmp388RegCMD, bmp388CMDSoftReset); err != nil {
return err
}
2022-09-21 19:35:01 +02:00
if err = d.connection.WriteByteData(bmp388RegConf, uint8(d.confFilter)<<1); err != nil {
return err
}
return nil
}
func (d *BMP388Driver) rawTemp() (temp int32, err error) {
var tp0, tp1, tp2 byte
2022-09-21 19:35:01 +02:00
data := make([]byte, 3)
if err = d.connection.ReadBlockData(bmp388RegTempData, data); err != nil {
return 0, err
}
buf := bytes.NewBuffer(data)
2020-09-27 14:41:26 +02:00
binary.Read(buf, binary.LittleEndian, &tp0) // XLSB
binary.Read(buf, binary.LittleEndian, &tp1) // LSB
binary.Read(buf, binary.LittleEndian, &tp2) // MSB
temp = ((int32(tp2) << 16) | (int32(tp1) << 8) | int32(tp0))
return
}
func (d *BMP388Driver) rawPressure() (press int32, err error) {
var tp0, tp1, tp2 byte
2022-09-21 19:35:01 +02:00
data := make([]byte, 3)
if err = d.connection.ReadBlockData(bmp388RegPressureData, data); err != nil {
return 0, err
}
buf := bytes.NewBuffer(data)
2020-09-27 14:41:26 +02:00
binary.Read(buf, binary.LittleEndian, &tp0) // XLSB
binary.Read(buf, binary.LittleEndian, &tp1) // LSB
binary.Read(buf, binary.LittleEndian, &tp2) // MSB
press = ((int32(tp2) << 16) | (int32(tp1) << 8) | int32(tp0))
return
}
func (d *BMP388Driver) calculateTemp(rawTemp int32) float32 {
// datasheet, sec 9.2 Temperature compensation
2022-09-21 19:35:01 +02:00
pd1 := float32(rawTemp) - d.calCoeffs.t1
pd2 := pd1 * d.calCoeffs.t2
2022-09-21 19:35:01 +02:00
temperatureComp := pd2 + (pd1*pd1)*d.calCoeffs.t3
return temperatureComp
}
func (d *BMP388Driver) calculatePress(rawPress int32, tLin float64) float32 {
2022-09-21 19:35:01 +02:00
pd1 := float64(d.calCoeffs.p6) * tLin
pd2 := float64(d.calCoeffs.p7) * math.Pow(tLin, 2)
pd3 := float64(d.calCoeffs.p8) * math.Pow(tLin, 3)
po1 := float64(d.calCoeffs.p5) + pd1 + pd2 + pd3
2022-09-21 19:35:01 +02:00
pd1 = float64(d.calCoeffs.p2) * tLin
pd2 = float64(d.calCoeffs.p3) * math.Pow(tLin, 2)
pd3 = float64(d.calCoeffs.p4) * math.Pow(tLin, 3)
po2 := float64(rawPress) * (float64(d.calCoeffs.p1) + pd1 + pd2 + pd3)
pd1 = math.Pow(float64(rawPress), 2)
2022-09-21 19:35:01 +02:00
pd2 = float64(d.calCoeffs.p9) + float64(d.calCoeffs.p10)*tLin
pd3 = pd1 * pd2
2022-09-21 19:35:01 +02:00
pd4 := pd3 + math.Pow(float64(rawPress), 3)*float64(d.calCoeffs.p11)
pressure := po1 + po2 + pd4
return float32(pressure)
}